A066292 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>1.
1, 84, 156, 364, 1092, 435708, 986076, 1118480, 1441188, 1674036, 2446668, 2597868, 3108924, 3875508, 4150692, 5537196, 6066396, 6686316, 13729212, 14639436, 18735444, 23307732, 27092052, 31806684, 58266468, 69728724
Offset: 1
Keywords
Examples
n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
Programs
-
Mathematica
t={}; Do[If[Mod[DivisorSigma[4,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,3,20}]; t (* T. D. Noe, Apr 11 2006 *)
Extensions
Edited by T. D. Noe, Apr 11 2006
Comments