cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066292 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>1.

Original entry on oeis.org

1, 84, 156, 364, 1092, 435708, 986076, 1118480, 1441188, 1674036, 2446668, 2597868, 3108924, 3875508, 4150692, 5537196, 6066396, 6686316, 13729212, 14639436, 18735444, 23307732, 27092052, 31806684, 58266468, 69728724
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Comments

Let d be the vector of divisors of n. The sequence d^(2^k) mod n has some period p. Thus if n divides sigma_(2^k)(n) for one period, then n divides sigma_(2^k)(n) for all k. For these n, the first period ends for k < 158. Hence it is easy to verify divisibility for all k. - T. D. Noe, Apr 11 2006

Examples

			n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[Mod[DivisorSigma[4,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,3,20}]; t (* T. D. Noe, Apr 11 2006 *)

Extensions

Edited by T. D. Noe, Apr 11 2006