cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118076 Numbers n such that n divides sigma_(2^k)(n), the sum of the 2^k powers of the divisors of n, for all k>0.

Original entry on oeis.org

1, 84, 435708, 986076, 1441188, 6066396, 18735444, 78863148
Offset: 1

Views

Author

T. D. Noe, Apr 11 2006

Keywords

Comments

Although these numbers have been tested up to k=20, it is conjectured that n divides sigma_(2^k)(n) for all k>0. Intersection of A046762 and A066292.
Let d be the vector of divisors of n. The sequence d^(2^k) mod n has some period p. Thus if n divides sigma_(2^k)(n) for one period, then n divides sigma_(2^k)(n) for all k. For these n, the first period ends for k<14. Hence it is easy to verify divisibility for all k. Intersection of A046762 and A066292. - T. D. Noe, Apr 12 2006

Examples

			n=84 is here because 84 divides each one of sigma_4(n)=53771172, sigma_8(n)=2488859101224132, sigma_16(n)=6144339637187846520573009496452, etc.
		

Crossrefs

Cf. A076230 (n divides sigma_2(n) and sigma_4(n)).

Programs

  • Mathematica
    t={}; Do[If[Mod[DivisorSigma[2,n],n]==0, AppendTo[t,n]], {n,10^8}]; Do[t=Select[t,Mod[DivisorSigma[2^k,# ],# ]==0&],{k,2,20}]; t

A118107 Period of the vector sequence d(n)^2^k mod n for k=1,2,3,..., where d(n) is the vector of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 6, 2, 1, 1, 2, 1, 4, 2, 10, 1, 1, 1, 4, 1, 2, 1, 6, 4, 2, 6, 3, 1, 1, 1, 4, 2, 1, 1, 4, 1, 1, 10, 2, 1, 2, 1, 6, 4, 6, 4, 2, 1, 1, 1, 4, 1, 2, 1, 3, 3, 4, 1, 2, 2, 10, 4, 11, 6, 1, 1, 6, 4, 4
Offset: 1

Views

Author

T. D. Noe, Apr 13 2006

Keywords

Comments

This sequence is related to the period of sigma_(2^k)(n) mod n, which is important in studying the numbers n dividing sigma_(2^k)(n) for all k>0. See A066292 and A118076. Note that a(n)=1 if n is a power of a prime.

Examples

			See A118106 for an example involving d(n)^k.
		

Crossrefs

Cf. A118106 (period of the vector sequence d(n)^k mod n).

Programs

  • Mathematica
    Table[d=Divisors[n]; k=0; found=False; While[i=0; While[i
    				
  • PARI
    A118107(n) = { my(divs=apply(d -> (d%n),divisors(n)), odivs = Vec(divs), vs = Map()); mapput(vs, odivs, 0); for(k=1,oo,divs = vector(#divs,i,(divs[i]*divs[i])%n); if(mapisdefined(vs, divs), return(k-mapget(vs, divs)), mapput(vs, divs, k))); }; \\ Antti Karttunen, Sep 23 2018

A066291 Numbers m such that DivisorSigma(8*k-4, m) mod m = 0 holds presumably for all k; that is, (8*k-4)-power-sums of divisors of m are divisible by m for all k.

Original entry on oeis.org

1, 34, 492, 5617, 11234, 22468, 67404, 190978, 709937, 763912, 1419874, 2839748, 5073996, 5446841, 7914353, 8519244, 10893682, 11548552, 15828706, 17126233, 21787364, 31657412, 34252466, 43574728, 57928121, 63314824, 65362092, 68504932, 73084632, 94972236
Offset: 1

Views

Author

Labos Elemer, Dec 12 2001

Keywords

Examples

			Tested for each m with k < 200.
Tested for each m with k < 500. - _Sean A. Irvine_, Oct 07 2023
		

Crossrefs

Programs

  • Mathematica
    Table[Union[Table[ IntegerQ[DivisorSigma[8*k-4, Part[t, m]]/Part[t, m]], {k, 1, 200}]], {m, 1, Length[t]}]; where t denotes the table of sequence.

Formula

DivisorSigma(8*k-4, m)/m is an integer for k = 1, 2, 3, ..., 200, ...

Extensions

More terms from Sean A. Irvine, Oct 07 2023
Showing 1-3 of 3 results.