A066325 Coefficients of unitary Hermite polynomials He_n(x).
1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 3, 0, -6, 0, 1, 0, 15, 0, -10, 0, 1, -15, 0, 45, 0, -15, 0, 1, 0, -105, 0, 105, 0, -21, 0, 1, 105, 0, -420, 0, 210, 0, -28, 0, 1, 0, 945, 0, -1260, 0, 378, 0, -36, 0, 1, -945, 0, 4725, 0, -3150, 0, 630, 0, -45, 0, 1, 0, -10395, 0, 17325, 0, -6930, 0, 990, 0, -55, 0, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; -1, 0, 1; 0, -3, 0, 1; 3, 0, -6, 0, 1; 0, 15, 0, -10, 0, 1; -15, 0, 45, 0, -15, 0, 1; 0, -105, 0, 105, 0, -21, 0, 1; ...
References
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 89,94 (2.3.41,54).
Links
- Robert Israel, Rows n=0..140 of triangle, flattened
- P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.
- P. Diaconis and A. Gamburd, Random matrices, magic squares and matching polynomials, The Electronic Journal of Combinatorics, Volume 11, Issue 2 (2004-6), Research Paper #R2.
- E. Elizalde, Cosmology: techniques and observations, arXiv:gr-qc/0409076, 2004.
- D. Foata, Une méthode combinatoire pour l'étude des fonctions spéciales, Journées sur les méthodes en mathématiques, Institut Henri Poincaré, Paris 2-3 april 2003.
- R. Sazdanovic, A categorification of the polynomial ring, slide presentation, 2011. [_Tom Copeland_, Dec 27 2015]
- Index entries for sequences related to Hermite polynomials
Crossrefs
Programs
-
Maple
Q:= [seq(orthopoly[H](n,x/sqrt(2))/2^(n/2), n=0..20)]: seq(seq(coeff(Q[n+1],x,k),k=0..n),n=0..20); # Robert Israel, Jan 01 2016 # Alternative: T := proc(n,k) option remember; if k > n then 0 elif n = k then 1 else (T(n, k+2)*(k+2)*(k+1))/(k-n) fi end: seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
-
Mathematica
H[0, x_] = 1; H[1, x_] := x; H[n_, x_] := H[n, x] = x*H[n-1, x] - (n-1)*H[n-2, x] // Expand; Table[CoefficientList[H[n, x], x], {n, 0, 11}] // Flatten (* Jean-François Alcover, May 11 2015 *)
-
PARI
for(n=0, 12, for(k=0,n, print1(if(Mod(n-k,2)==0, (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!), 0), ", "))) \\ G. C. Greubel, Nov 23 2018
-
Python
from sympy import Poly from sympy.abc import x def H(n, x): return 1 if n==0 else x if n==1 else x*H(n - 1, x) - (n - 1)*H(n - 2, x) def a(n): return Poly(H(n, x), x).all_coeffs()[::-1] for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
Sage
def A066325_row(n): T = [0]*(n+1) if n==1: return [1] for m in (1..n-1): a,b,c = 1,0,0 for k in range(m,-1,-1): r = a - (k+1)*c if k < m : T[k+2] = u; a,b,c = T[k-1],a,b u = r T[1] = u; return T[1:] for n in (1..11): A066325_row(n) # Peter Luschny, Nov 01 2012
-
Sage
# uses[riordan_array from A256893] riordan_array(exp(-x^2/2), x, 8, True) # Peter Luschny, Nov 23 2018
Formula
T(n, k) = (-2)^((k-n)/2)*n!/(k!*((n-k)/2)!) for n-k even, 0 otherwise.
E.g.f. of row polynomials {He_n(y)}: A(x, y) = exp(x*y - x^2/2).
The umbral compositional inverses (cf. A001147) of the polynomials He(n,x) are given by the same polynomials unsigned, A099174. - Tom Copeland, Nov 15 2014
Exp(-D^2/2) x^n = He_n(x) = p_n(x+1) with D = d/dx and p_n(x), the row polynomials of A159834. These are an Appell sequence of polynomials with lowering and raising operators L = D and R = x - D. - Tom Copeland, Jun 26 2018
Comments