cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066341 Sum of distinct terms in n-th row of Fermat's triangle.

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 1, 12, 1, 14, 1, 16, 17, 1, 1, 20, 1, 22, 23, 24, 1, 26, 1, 28, 1, 30, 1, 94, 1, 1, 35, 36, 37, 38, 1, 40, 41, 42, 1, 130, 1, 46, 47, 48, 1, 50, 1, 52, 53, 54, 1, 56, 57, 58, 59, 60, 1, 184, 1, 64, 65, 1, 67, 202, 1, 70, 71, 214, 1, 74, 1, 76, 77, 78, 79, 238, 1
Offset: 2

Views

Author

Wouter Meeussen, Jan 01 2002

Keywords

Examples

			Fermat's triangle (A066340) is {1}, {1, 1}, {1, 0, 1}, {1, 1, 1, 1}, {1, 4, 3, 4, 1}, ... and the distinct terms in each row are {1}, {1}, {0, 1}, {1}, {1, 3, 4}, ... with sums 1, 1, 1, 1, 8, ...
		

Crossrefs

Programs

  • GAP
    List(List(List([2..80],n->List([1..n-1],m->PowerMod(m,Phi(n),n))),Set),Sum); # Muniru A Asiru, Aug 06 2018
  • Mathematica
    Plus@@@(Union/@Table[ (PowerMod[ #, EulerPhi[ k ], k ])&/@ Range[ k-1 ], {k, 2, 256} ]) or equivalently Table[ w=Length[ FactorInteger[ k ]];(2^(w-1)-1)*k+2^(w-1), {k, 2, 256} ]
  • PARI
    A066341(n) = { my(ph = eulerphi(n),m=Map(),t,s=0); for(k=1,n-1,t = ((k^ph)%n); if(!mapisdefined(m, t), s += t; mapput(m,t,t))); (s); }; \\ Antti Karttunen, Aug 06 2018
    

Formula

Conjectures from Ridouane Oudra, Apr 05 2025: (Start)
a(n) = (n+1)*2^(omega(n)-1) - n, where omega(n) = A001221(n).
a(n) = (n+1)*A007875(n) - n.
a(n) = (n/2)*A087893(n) + A007875(n). (End)