cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A112873 Partial sums of A032378.

Original entry on oeis.org

2, 5, 9, 14, 20, 27, 37, 49, 63, 79, 97, 117, 139, 163, 189, 219, 252, 288, 327, 369, 414, 462, 513, 567, 624, 684, 747, 815, 887, 963, 1043, 1127, 1215, 1307, 1403, 1503, 1607, 1715, 1827, 1943, 2063, 2187, 2317, 2452, 2592, 2737, 2887, 3042, 3202, 3367, 3537
Offset: 1

Views

Author

N. J. A. Sloane, Oct 29 2006

Keywords

Crossrefs

Programs

  • Magma
    A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
    [(&+[A032378[j]: j in [1..n]]): n in [1..100]]; // G. C. Greubel, Jul 20 2023
    
  • Mathematica
    Accumulate[Select[Range[300],!IntegerQ[Surd[#,3]]&&Divisible[#,Floor[ Surd[ #,3]]]&]] (* Harvey P. Dale, May 13 2020 *)
  • Python
    from itertools import count, islice, accumulate
    from sympy import integer_nthroot
    def A112873_gen(): # generator of terms
        return accumulate(filter(lambda x: not x%integer_nthroot(x,3)[0],(n+(k:=integer_nthroot(n, 3)[0])+int(n>=(k+1)**3-k) for n in count(1))))
    A112873_list = list(islice(A112873_gen(),40)) # Chai Wah Wu, Oct 12 2024
  • SageMath
    A032378=flatten([[k*j for j in range((k^2+1),(k^2+3*k+3)+1)] for k in range(1,15)])
    def A112873(n): return sum(A032378[j] for j in range(n+1))
    [A112873(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
    

Formula

From Vaclav Kotesovec, Oct 13 2024: (Start)
a(3*k*(k+3)/2) = 3*k*(k+1)*(k+2)*(8*k^2+21*k+31)/40.
a(n) ~ 2^(5/2)*n^(5/2)/(5*3^(3/2)) - n^2/2 + 13*n^(3/2)/(2^(3/2)*sqrt(3)). (End)

A032378 Noncubes k that are divisible by floor(k^(1/3)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 222, 228, 234, 240
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2001, corrected Oct 29 2006

Keywords

Comments

The Concrete Math Club Casino problem - non-cube winning slots.

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, pp. 74-76.

Crossrefs

Programs

  • Magma
    [k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..6]]; // G. C. Greubel, Jul 20 2023
    
  • Maple
    t1:=[]; for n from 1 to 500 do t2:=floor(n^(1/3)); if n mod t2 = 0 and t2^3 <> n then t1:=[op(t1),n]; fi; od:
    # Alternate:
    seq(seq(n,n=k^3+k..(k+1)^3-1,k),k=1..6); # Robert Israel, Mar 24 2020
  • Mathematica
    Select[Range[300],!IntegerQ[Surd[#,3]]&&Divisible[#,Floor[Surd[#,3]]]&] (* Harvey P. Dale, May 13 2020 *)
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A032378_gen(): # generator of terms
        return filter(lambda x: not x%integer_nthroot(x,3)[0],(n+(k:=integer_nthroot(n, 3)[0])+int(n>=(k+1)**3-k) for n in count(1)))
    A032378_list = list(islice(A032378_gen(),40)) # Chai Wah Wu, Oct 12 2024
  • SageMath
    flatten([[k*j for j in range((k^2+1),(k^2+3*k+3)+1)] for k in range(1,7)]) # G. C. Greubel, Jul 20 2023
    
Showing 1-2 of 2 results.