cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066369 Number of subsets of {1, ..., n} with no four terms in arithmetic progression.

Original entry on oeis.org

1, 2, 4, 8, 15, 29, 56, 103, 192, 364, 668, 1222, 2233, 3987, 7138, 12903, 22601, 40200, 71583, 125184, 218693, 386543, 670989, 1164385, 2021678, 3462265, 5930954, 10189081, 17266616, 29654738, 50912618, 86017601, 145327544, 247555043, 415598432, 698015188
Offset: 0

Views

Author

Jan Kristian Haugland, Dec 22 2001

Keywords

Examples

			a(5) = 29 because there are 32 subsets and three of them contain four terms in arithmetic progression: {1, 2, 3, 4}, {2, 3, 4, 5} and {1, 2, 3, 4, 5}.
		

Crossrefs

Programs

  • Python
    from sympy import subsets
    def noap4(n):
        avoid=list()
        for skip in range(1,(n+2)//3):
            for start in range (1,n+1-3*skip):
                avoid.append(set({start,start+skip,start+2*skip,start+3*skip}))
        s=list()
        for i in range(4):
            for smallset in subsets(range(1,n+1),i):
                s.append(smallset)
        for i in range(4,n+1):
            for temptuple in subsets(range(1,n+1),i):
                tempset=set(temptuple)
                status=True
                for avoidset in avoid:
                    if avoidset <= tempset:
                        status=False
                        break
                if status:
                    s.append(tempset)
        return s
    # Counts all such sets
    def a(n):
        return len(noap4(n)) # David Nacin, Mar 05 2012

Formula

a(n) = 2^n - A018789(n).

Extensions

a(31)-a(35) (using data in A018789) from Alois P. Heinz, Sep 08 2019