cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066375 a(n) = 6*binomial(n,4) + 3*binomial(n,3) + 4*binomial(n,2) - n + 2.

Original entry on oeis.org

1, 4, 14, 40, 97, 206, 394, 694, 1145, 1792, 2686, 3884, 5449, 7450, 9962, 13066, 16849, 21404, 26830, 33232, 40721, 49414, 59434, 70910, 83977, 98776, 115454, 134164, 155065, 178322, 204106, 232594, 263969, 298420, 336142, 377336, 422209, 470974, 523850, 581062
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2002

Keywords

Programs

  • Mathematica
    Table[6Binomial[n,4]+3Binomial[n,3]+4Binomial[n,2]-n+2,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,4,14,40,97},40] (* Harvey P. Dale, Feb 05 2017 *)
  • PARI
    a(n) = { 6*binomial(n,4) + 3*binomial(n,3) + 4*binomial(n,2) - n + 2 } \\ Harry J. Smith, Feb 11 2010

Formula

From Colin Barker, Apr 20 2012: (Start)
a(n) = (8 - 14*n + 13*n^2 - 4*n^3 + n^4)/4.
G.f.: x*(1 - x + 4*x^2 + 2*x^4)/(1-x)^5. (End)