A066376 Number of [*]-divisors d <= n such that there is another [*]-divisor d' < n with d [*] d' = n.
0, 1, 1, 2, 1, 3, 2, 3, 1, 3, 1, 5, 1, 5, 4, 4, 1, 3, 1, 5, 2, 3, 1, 7, 1, 3, 3, 8, 1, 9, 7, 5, 1, 3, 1, 5, 1, 3, 1, 7, 1, 5, 1, 5, 3, 3, 3, 9, 1, 3, 3, 5, 1, 7, 3, 11, 1, 3, 3, 14, 3, 15, 13, 6, 1, 3, 1, 5, 1, 3, 1, 7, 2, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 8, 4, 3, 1, 7, 1, 7, 3, 5, 1, 7, 5, 11, 1
Offset: 1
Examples
14 has 5 [*]-divisors: 1, 2, 3, 6, 7, since for example 2 [*] 7 = 10 [*] 111 = 1110 OR 0000 = 1110; and 3 [*] 6 = 11 [*] 110 = 1100 OR 0110 = 1110.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
import Data.Bits (Bits, (.|.), shiftL, shiftR) a066376 :: Int -> Int a066376 n = length [d | d <- [1..n-1], any ((== n) . (orm d)) [1..n]] where orm 1 v = v orm u v = orm (shiftR u 1) (shiftL v 1) .|. if odd u then v else 0 -- Reinhard Zumkeller, Mar 01 2013
Extensions
Edited by N. J. A. Sloane, Dec 13 2021
Name corrected by Sean A. Irvine, Oct 10 2023
Comments