A066406 a(n) = 2^n*(3^n-3).
0, 24, 192, 1248, 7680, 46464, 279552, 1678848, 10076160, 60463104, 362790912, 2176770048, 13060669440, 78364114944, 470184886272, 2821109710848, 16926659051520, 101559955881984, 609359738437632, 3656158436917248, 21936950634086400, 131621703829684224
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..150
- J.-Z. Zhang, Z.-S. You and Z.-L. Li, Enumeration of binary orthogonal arrays of strength 1, Discrete Math., 239 (2000), 191-198.
- Index entries for linear recurrences with constant coefficients, signature (8,-12).
Programs
-
Mathematica
Table[2^n(3^n-3),{n,30}] (* or *) LinearRecurrence[{8,-12},{0,24},30] (* Harvey P. Dale, Jul 28 2019 *)
-
PARI
a(n) = { 2^n*(3^n - 3) } \\ Harry J. Smith, Feb 13 2010
-
PARI
concat(0, Vec(24*x^2/((2*x-1)*(6*x-1)) + O(x^30))) \\ Colin Barker, Oct 20 2015
Formula
From Colin Barker, Oct 20 2015: (Start)
a(n) = 8*a(n-1)-12*a(n-2).
G.f.: 24*x^2 / ((2*x-1)*(6*x-1)). (End)
Comments