A066408 Numbers n such that the Eisenstein integer (1 - ω)^n - 1 has prime norm, where ω = -1/2 + sqrt(-3)/2.
2, 5, 7, 11, 17, 19, 79, 163, 193, 239, 317, 353, 659, 709, 1049, 1103, 1759, 2029, 5153, 7541, 9049, 10453, 23743, 255361, 534827, 2237561, 2888387, 4043119
Offset: 1
Examples
For n = 7, (1 - ω)^7 - 1 has norm 2269, a prime. Or, for p = 7, 3^7 + 3^4 + 1 = 2269, which is prime.
References
- P. H. T. Beelen, Algebraic geometry and coding theory, Ph.D. Thesis, Eindhoven, The Netherlands, September 2001.
- J. M. Doumen, Ph.D. Thesis, Eindhoven, The Netherlands, to appear.
- Mike Oakes, posting to primenumbers(AT)yahoogroups.com, Dec 24 2001.
Links
- Pedro Berrizbeitia and Boris Iskra, Gaussian Mersenne and Eisenstein Mersenne primes, Mathematics of Computation 79 (2010), pp. 1779-1791.
- Chris Caldwell, The largest known primes
- Chris Caldwell, Generalized Unique primes
- Mike Oakes, Eisenstein Mersenne and Fermat primes
- Mike Oakes, Eisenstein Mersenne and Fermat primes, message 4607 in primenumbers Yahoo group, Dec 24, 2001.
- Mike Oakes, A new series of Mersenne-like Gaussian primes
- Mike Oakes, Posting to the Number Theory list, Dec 27 2005.
- K. Pershell and L. Huff, Mersenne Primes in Imaginary Quadratic Number Fields, (2002).
- Eric Weissteins's World of Mathematics, Eisenstein Integer
Programs
-
Mathematica
maxPi = 3000; primeNormQ[p_] := PrimeQ[1 + 3^p - 2*3^(p/2)*Cos[(p*Pi)/6]]; A066408 = {}; Do[ If[primeNormQ[p = Prime[k]], Print[p]; AppendTo[A066408, p]], {k, 1, maxPi}]; A066408 (* Jean-François Alcover, Oct 21 2011 *)
-
PARI
print1("2, "); /*the only even member; it is special*/ forprime(n=3,2029,if(ispseudoprime(3^n-kronecker(3,n)*3^((n+1)/2)+1),print1(n, ", "))) \\ Serge Batalov, Mar 29 2014
Extensions
a(26) from Serge Batalov, Mar 29 2014
a(27) from Ryan Propper and Serge Batalov, Jun 18 2023
a(28) from Ryan Propper and Serge Batalov, Jun 20 2023
Corrected link to NMBRTHRY posting. - Serge Batalov, Apr 01 2014
Comments