cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A066417 Sum of anti-divisors of n.

Original entry on oeis.org

0, 0, 2, 3, 5, 4, 10, 8, 8, 14, 12, 13, 19, 16, 18, 14, 28, 28, 18, 24, 22, 36, 34, 23, 39, 24, 42, 46, 24, 36, 42, 58, 48, 30, 52, 32, 50, 70, 52, 55, 41, 66, 56, 40, 86, 58, 60, 56, 72, 80, 42, 94, 88, 52, 74, 56, 74, 96, 90, 107, 57, 78, 112, 46, 84, 86, 132, 112, 54, 102
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			For n = 18: 2n-1, 2n, 2n+1 are 35, 36, 37 with odd divisors > 1 {5,7,35}, {3,9}, {37} and quotients 7, 5, 1, 12, 4, 1, so the anti-divisors of 12 are 4, 5, 7, 12. Therefore a(18) = 28.
		

Crossrefs

Programs

  • Maple
    # Uses antidivisors() implemented in A066272.
    A066417 := proc(n) add(d,d=antidivisors(n)) ; end proc: # R. J. Mathar, Jul 04 2011
    # faster alternative with Alekseyev formula
    A066417 := proc(n)
        k := A007814(n) ;
        numtheory[sigma](2*n-1)+numtheory[sigma](2*n+1) +numtheory[sigma(n/2^k)*2^(k+1) -6*n-2 ;
    end proc: # R. J. Mathar, Nov 11 2014
  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n &]; Table[ Plus @@ antid[n], {n, 70}] (* Robert G. Wilson v, Mar 15 2004 *)
    a066417[n_Integer] := Total[Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]]; Array[a066417, 120] (* _Michael De Vlieger, Aug 08 2014, after Harvey P. Dale at A066272 *)
  • PARI
    al(n)=Vec(sum(k=1,n,2*k*(x^(3*k)+x*O(x^n))/(1-x^(2*k))+(2*k+1)*(x^(3*k+1)+x^(3*k+2)+x*O(x^n))/(1-x^(2*k+1)))) \\ Franklin T. Adams-Watters, Sep 11 2009
    
  • PARI
    { a(n) = my(k); if(n>1, k=valuation(n,2); sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2, 0); } \\ Max Alekseyev, Apr 27 2010
    
  • Python
    from sympy import divisors
    A066417 = [sum([2*d for d in divisors(n) if n > 2*d and n%(2*d)] + [d for d in divisors(2*n-1) if n > d >=2 and n%d] + [d for d in divisors(2*n+1) if n > d >=2 and n%d]) for n in range(1,10**6)] # Chai Wah Wu, Aug 12 2014

Formula

G.f.: Sum_{k>0} (2k x^(3k) / (1 - x^(2k)) + (2k+1)(x^(3k+1) + x^(3k+2)) / (1 - x^(2k+1))). - Franklin T. Adams-Watters, Sep 11 2009
For n>1, a(n) = A000203(2*n-1) + A000203(2*n+1) + A000203(n/2^k)*2^(k+1) - 6*n - 2, where k=A007814(n). - Max Alekseyev, Apr 27 2010
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3*Pi^2/8 - 3 = 0.70110165... . - Amiram Eldar, Jan 19 2024

A066416 Number of numbers m such that the sum of the anti-divisors of m is n+1.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 2, 1, 0, 0, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 1, 1, 3, 0, 0, 0, 2, 0, 1, 0, 1, 0, 3, 0, 1, 1, 3, 1, 3, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2
Offset: 1

Views

Author

Jon Perry, Dec 28 2001

Keywords

Comments

See A066272 for definition of anti-divisor.

Examples

			8 has anti-divisors 1, 3 and 5, whose sum is 9 and 9 has anti-divisors 1, 2 and 6, whose sum is 9 and there are no others. Therefore a(8)=2.
		

Crossrefs

A241003 Numbers k such that anti-phi(k) = anti-phi(k+1).

Original entry on oeis.org

2, 8, 14, 20, 27, 32, 284, 297, 362, 717, 842, 1322, 1377, 1725, 1802, 1917, 1982, 2222, 2637, 3410, 4094, 4149, 4850, 5288, 5642, 5654, 5660, 5690, 5750, 5937, 5949, 6237, 7017, 7245, 7377, 7490, 8097, 8217, 8277, 8462, 8774, 9117, 9542, 9897, 10034, 11409, 11810
Offset: 1

Views

Author

Paolo P. Lava, Aug 07 2014

Keywords

Comments

Like A001274 but using anti-phi, as defined in A066452, instead of phi, per A000010.

Examples

			anti-phi(2) = anti-phi(3) = 1.
anti-phi(8) = anti-phi(9) = 4.
anti-phi(14) = anti-phi(15) = 7. Etc.
		

Crossrefs

Programs

Showing 1-3 of 3 results.