cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066426 Conjectured values for a(n) = least natural number k such that phi(n+k) = phi(n) + phi(k), if k exists; otherwise 0.

Original entry on oeis.org

2, 1, 0, 4, 4, 4, 14, 6, 6, 4, 16, 6, 14, 6, 0, 5, 8, 6, 6, 8, 0, 4, 46, 12, 10, 8, 6, 12, 26, 12, 62, 6, 12, 4, 16, 12, 28, 6, 0, 10, 24, 24, 86, 8, 0, 6, 38, 6, 62, 25, 12, 16, 24, 18, 32, 24, 0, 4, 118, 24, 80, 6, 12, 10, 28, 12, 134, 8, 0, 35, 142, 24, 146, 8, 30, 12, 8, 24, 46, 20, 6
Offset: 1

Views

Author

Joseph L. Pe, Dec 27 2001

Keywords

Comments

It would be nice to remove the word "Conjectured" from the description. - N. J. A. Sloane
The values of a(3), a(15) and a(21) listed above, namely 0, are conjectural. There is no natural number k < 10^6 satisfying the "homomorphic condition" phi(n+k) = phi(n) + phi(k) for n = 3, 15, 21.
The terms for which there is no solution k < 10^6 are n = 3, 15, 21, 39, 45, 57, 69, 105, 147, 165, 177, 195, 213, 273, 285,..., which satisfy n=3 (mod 6). - T. D. Noe, Jan 20 2004
All n < 2000 and k < 10^8 have been tested. Sequence A110172 gives the n for which there is no solution k < 10^8. For n=1 (mod 3) or n=2 (mod 3), it appears that the least solution k satisfies k<=2n. For n=0 (mod 3), the least k, if it exists, can be greater than 2n. - T. D. Noe, Jul 15 2005

References

  • R. K. Guy, Unsolved Problems in Number Theory, 3rd Ed., New York, Springer-Verlag, 2004, Section B36.

Crossrefs

Cf. A000010.
Cf. A091531 (primes p such that k=2p is the smallest solution to phi(p+k) = phi(p) + phi(k)).
Cf. A110173 (least k such that phi(n) = phi(k) + phi(n-k) for 0 < k < n).

Programs

  • Mathematica
    a[ n_ ] := Min[ Select[ Range[ 1, 10^6 ], EulerPhi[ 1, n + # ] == EulerPhi[ 1, n ] + EulerPhi[ 1, # ] & ] ]; Table[ a[ i ], {i, 1, 21} ]

Extensions

More terms from T. D. Noe, Jan 20 2004