cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A066456 Upper bound on number of regular triangulations of cyclic polytope C(n, n-4).

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 25, 40, 65, 97, 146, 206, 292, 394, 533, 694, 905, 1145, 1450, 1792, 2216, 2686, 3257, 3884, 4633, 5449, 6410, 7450, 8660, 9962, 11461, 13066, 14897, 16849, 19058, 21404, 24040, 26830, 29945, 33232, 36881, 40721, 44962, 49414, 54308, 59434
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2002

Keywords

Crossrefs

Cf. A066375 (bisection), A066455 (bisection).

Programs

  • Maple
    A066456 := proc(n) local m; if n mod 2 = 0 then m := n/2; 6*binomial(m,4)+3*binomial(m,3)+4*binomial(m,2)-m+2; else m := (n+1)/2; 6*binomial(m,4)+5*binomial(m,2)-4*m+5; fi; end;
  • Mathematica
    CoefficientList[Series[-(1 - x - 4 x^5 + x^6 - 2 x^2 + 4 x^3 + 2 x^4 + 2 x^7)/((1 + x)^3 (x - 1)^5), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2014 *)
  • PARI
    Vec(x*(1 - x - 2*x^2 + 4*x^3 + 2*x^4 - 4*x^5 + x^6 + 2*x^7) / ((1 - x)^5*(1 + x)^3) + O(x^60)) \\ Colin Barker, May 04 2017

Formula

G.f.: x*(1-x-4*x^5+x^6-2*x^2+4*x^3+2*x^4+2*x^7) / ( (1+x)^3*(1-x)^5 ). - R. J. Mathar, Aug 07 2014
From Colin Barker, May 04 2017: (Start)
a(n) = (n^4 - 8*n^3 + 52*n^2 - 112*n + 128) / 64 for n even.
a(n) = (n^4 - 8*n^3 + 54*n^2 - 120*n + 137) / 64 for n odd.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n>8.
(End)

A112830 Table of number of domino tilings of generalized Aztec pillows of type (1, ..., 1, 3, 1, ..., 1)_n.

Original entry on oeis.org

1, 1, 5, 1, 10, 25, 1, 17, 65, 113, 1, 26, 146, 346, 481, 1, 37, 292, 932, 1637, 1985, 1, 50, 533, 2248, 5013, 7218, 8065, 1, 65, 905, 4937, 13897, 24201, 30529, 32513, 1, 82, 1450, 10018, 35218, 74530, 108970, 126034, 130561, 1, 101, 2216, 19016, 82436
Offset: 0

Views

Author

Christopher Hanusa (chanusa(AT)math.binghamton.edu), Sep 21 2005

Keywords

Comments

The number of tilings of a generalized Aztec pillow of type (k 1's followed by a 3 followed by n-k-1 1's) is entry (n,k+1).

Examples

			The number of tilings of a generalized Aztec pillow of type (1,1,3,1)_n is entry (4,3) = 346.
		

Crossrefs

A092440 (main diagonal), A092441 (first subdiagonal), A002522 (column k = 1), A066455 (column k = 2). Cf. A264960.

Programs

  • Maple
    matrix(11,11,[seq([seq(((2^n-sum(binomial(n,j),j=0..k))^2+(binomial(n-1,k))^2)/2,n=k+1..k+11)],k=0..10)]);

Formula

T(2*n,n) = A264960(n). - Peter Bala, Nov 29 2015
Showing 1-2 of 2 results.