cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066511 f-amicable numbers where f(n) = n-1.

Original entry on oeis.org

100, 110, 1806, 1872, 2404, 3742, 12488, 14378, 25130, 26696, 53418, 57448, 61962, 64938, 67528, 67624, 172362, 187624, 195114, 208072, 591882, 643624, 790758, 938948, 1361562, 1381624, 1803776, 1877682, 1892224, 2091770, 3335288, 3559402, 6585656, 8810794
Offset: 1

Views

Author

Joseph L. Pe, Jan 04 2002

Keywords

Comments

f-amicable pairs are defined similarly to f-perfect numbers in A066218. That is, a, b is a f-amicable pair if f(a) = D(b) and f(b) = D(a), where D(n) = sum_{k divides n, k
Equivalently, let g(n) = sigma(n)-n-d(n)+2, where d(n) is the number of divisors of n and sigma(n) is their sum. Then n is in the sequence if g(g(n))=n but g(n) != n. (Sequence A066230 contains the solutions of g(n)=n.)

Examples

			Proper divisors of 100 = {1, 2, 4, 5, 10, 20, 25, 50}. f applied to these divisors = {0, 1, 3, 4, 9, 19, 24, 49}; their sum = 109. So D(100) = f(110). proper divisors of 110 = {1, 2, 5, 10, 11, 22, 55}. f applied to these divisors = {0, 1, 4, 9, 10, 21, 54}; their sum = 99. So D(110) = f(100). Therefore 100, 110 is an f-amicable pair.
		

Crossrefs

Programs

  • Mathematica
    g[ n_ ] := DivisorSigma[ 1, n ]-n-DivisorSigma[ 0, n ]+2; For[ n=1, True, n++, If[ g[ g[ n ] ]==n&&g[ n ]!=n, Print[ n ] ] ]

Extensions

Edited by Dean Hickerson, Jan 10 2002.
More terms from Amiram Eldar, Oct 02 2019