A066573 Pairs (x, y), x < y, of f-amicable numbers where f(k) = floor(|k*sin(k)|) sorted by increasing y, then increasing x; f-amicable numbers are defined in A066511.
1, 3, 22, 223, 283, 355, 22, 421, 389, 1065, 365, 1508, 2130, 3079, 1065, 69203, 51872, 127539, 83282, 128604, 152628, 252271, 191963, 295294, 130252, 459590, 717615, 1401314, 2840, 7189717, 1258370, 10269235, 2130, 11671711, 11519862, 19177306, 17002972, 21316045
Offset: 1
Keywords
Examples
Proper divisors of 22 are {1,2,11}; f applied to these = {0, 1, 10}, which sum to 11 = f(223). Proper divisors of 223 are {1}; f applied to these = {0}, which sum to 0 = f(22). Hence (22,223) is an f-amicable pair.
Links
- Sean A. Irvine, Java program (github)
- J. Pe, On a Generalization of Perfect Numbers, J. Rec. Math., 31(3) (2002-2003), 168-172.
Programs
-
Mathematica
f[x_] := Floor[Abs[x*Sin[x]]]; d[x_] := Apply[ Plus, Map[ f, Divisors[ x] ] ] - f[ x]; m = Table[{x, y}, {x, 1, 1000}, {y, 1, 1000}]; Do[a = m[[i, j]]; If[ (a[[1]] < a[[2]]) && (f[a[[1]]] == d[a[[2]]]) && (f[a[[2]]] == d[a[[1]]]), Print[{i, j}]], {j, 1, 1000}, {i, 1, 1000}]
Extensions
More terms and entry revised by Sean A. Irvine, Oct 29 2023
Comments