cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066530 Expansion of (1+x+x^3)/((1-x)*(1-x^4)).

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 47, 47, 48, 49, 50, 50, 51, 52, 53, 53, 54, 55
Offset: 0

Views

Author

Robert G. Wilson v, Jan 06 2002

Keywords

Crossrefs

Cf. A037915.

Programs

  • Magma
    [Floor((3*n + 5)/4): n in [0..100]]; // Wesley Ivan Hurt, Jan 02 2017
  • Maple
    A066530:=n->floor((3*n+5)/4): seq(A066530(n), n=0..100); # Wesley Ivan Hurt, Jan 02 2017
  • Mathematica
    CoefficientList[ Series[ (1 + x + x^3)/((1 - x)*(1 - x^4)), {x, 0, 75} ], x] (* or *) Table[Floor[(3 n + 5)/4], {n, 0, 75}]
    LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 2, 3, 4}, 80] (* Harvey P. Dale, Apr 01 2013 *)

Formula

G.f.: (1 + x + x^3)/((1 - x)*(1 - x^4)).
a(n) = floor((3*n + 5)/4).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4, with a(0)=1, a(1)=2, a(2)=2, a(3)=3, a(4)=4. - Harvey P. Dale, Apr 01 2013
a(n) = (6*n+7+2*cos(n*Pi/2)+cos((n+1)*Pi)+2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
Sum_{n>=0} (-1)^n/a(n) = log(3)/2 + Pi/(6*sqrt(3)). - Amiram Eldar, Jan 31 2023