A066637 Total number of elements in all factorizations of n with all factors > 1.
0, 1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 8, 1, 3, 3, 12, 1, 8, 1, 8, 3, 3, 1, 17, 3, 3, 6, 8, 1, 10, 1, 20, 3, 3, 3, 22, 1, 3, 3, 17, 1, 10, 1, 8, 8, 3, 1, 34, 3, 8, 3, 8, 1, 17, 3, 17, 3, 3, 1, 27, 1, 3, 8, 35, 3, 10, 1, 8, 3, 10, 1, 46, 1, 3, 8, 8, 3, 10, 1, 34, 12, 3, 1, 27, 3, 3, 3, 17, 1, 27, 3, 8, 3, 3, 3
Offset: 1
Keywords
Examples
a(12) = 8: there are 4 factorizations of 12: (12), (6*2), (4*3), (3*2*2) having 1, 2, 2, 3 elements respectively, a total of 8.
References
- Amarnath Murthy, Generalization of Partition function, Introducing Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
- Amarnath Murthy, Length and extent of Smarandache Factor partitions, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Crossrefs
The version for normal multisets is A001787.
The version for compositions is A001792.
Choosing a value instead of position gives A339564.
A000070 counts partitions with a selected part.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A336875 counts compositions with a selected part.
Programs
-
Maple
# Return a list of lists which are factorizations (product representations) # of n. Within each sublist, the factors are sorted. A minimum factor in # each element of sublists returned can be specified with 'mincomp'. # If mincomp=2, the number of sublists contained in the list returned is A001055(n). # Example: # n=8 and mincomp=2 return [[2,2,2],[4,8],[8]] listProdRep := proc(n,mincomp) local dvs,resul,f,i,j,rli,tmp ; resul := [] ; # list returned is empty if n < mincomp if n >= mincomp then if n = 1 then RETURN([1]) ; else # compute the divisors, and take each divisor # as a head element (minimum element) of one of the # sublists. Example: for n=8 use {1,2,4,8}, and consider # (for mincomp=2) sublists [2,...], [4,...] and [8]. dvs := numtheory[divisors](n) ; for i from 1 to nops(dvs) do # select the head element 'f' from the divisors f := op(i,dvs) ; # if this is already the maximum divisor n # itself, this head element is the last in # the sublist if f =n and f >= mincomp then resul := [op(resul),[f]] ; elif f >= mincomp then # if this is not the maximum element # n itself, produce all factorizations # of the remaining factor recursively. rli := procname(n/f,f) ; # Prepend all the results produced # from the recursion with the head # element for the result. for j from 1 to nops(rli) do tmp := [f,op(op(j,rli))] ; resul := [op(resul),tmp] ; od ; fi ; od ; fi ; fi ; resul ; end: A066637 := proc(n) local f,d; a := 0 ; for d in listProdRep(n,2) do a := a+nops(d) ; end do: a ; end proc: # R. J. Mathar, Jul 11 2013 # second Maple program: with(numtheory): b:= proc(n, k) option remember; `if`(n>k, 0, [1$2])+ `if`(isprime(n), 0, (p-> p+[0, p[1]])(add( `if`(d>k, 0, b(n/d, d)), d=divisors(n) minus {1, n}))) end: a:= n-> `if`(n<2, 0, b(n$2)[2]): seq(a(n), n=1..120); # Alois P. Heinz, Feb 12 2019
-
Mathematica
g[1, r_] := g[1, r]={1, 0}; g[n_, r_] := g[n, r]=Module[{ds, i, val}, ds=Select[Divisors[n], 1<#<=r&]; val={0, 0}+Sum[g[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]; val+{0, val[[1]]}]; a[n_] := g[n, n][[2]]; a/@Range[95] (* g[n, r] = {c, f}, where c is the number of factorizations of n with factors <= r and f is the total number of factors in them. - Dean Hickerson, Oct 28 2002 *) facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];Table[Sum[Length[fac],{fac,facs[n]}],{n,50}] (* Gus Wiseman, Apr 18 2021 *)
Comments