cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0

Views

Author

Keywords

Comments

a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - Wolfdieter Lang
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - Thomas Wieder, May 20 2004
Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - Thomas Baruchel, Nov 07 2005
Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - Gary W. Adamson, Jun 16 2009
Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - Gary W. Adamson, Mar 21 2011
More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - Omar E. Pol, Feb 14 2012
Row sums of triangle A221530. - Omar E. Pol, Jan 21 2013
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also as follows:
Convolution of A000005 and A000041.
Convolution of A006218 and A002865.
Convolution of A341062 and A000070.
Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - Gus Wiseman, Apr 19 2021

Examples

			For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
		

References

  • S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A210485.
Column k=1 of A256193.
The version for normal multisets is A001787.
The unordered version is A001792.
The strict case is A015723.
The version for factorizations is A066637.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.

Programs

  • GAP
    List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
  • Haskell
    a006128 = length . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
    a:= n-> coeff(series(g,x,62),x,n):
    seq(a(n), n=0..61);
    # second Maple program:
    a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
    seq(a(n), n=0..61);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
    CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
    a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
    Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
  • PARI
    f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
    
  • PARI
    a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
    
  • Python
    from sympy import divisor_count, npartitions
    def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    

Formula

G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
a(n) = Sum_{k=1..n} k*A008284(n, k).
a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - Omar E. Pol, Jan 21 2013
Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
a(n) = A066897(n) + A066898(n), n>0. - Reinhard Zumkeller, Mar 09 2012
a(n) = A066186(n) - A196087(n), n >= 1. - Omar E. Pol, Apr 22 2012
a(n) = A194452(n) + A024786(n+1). - Omar E. Pol, May 19 2012
a(n) = A000203(n) + A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - Omar E. Pol, May 12 2013
a(n) = A198381(n) + A026905(n), n >= 1. - Omar E. Pol, Aug 10 2013
a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - Peter Bala, Dec 23 2013
a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - Omar E. Pol, Jul 14 2014
From Vaclav Kotesovec, Jun 23 2015: (Start)
Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
(End)
a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - Omar E. Pol, Feb 05 2021 2014

A162247 Irregular triangle in which row n lists all factorizations of n, sorted by the number of factors in each factorization.

Original entry on oeis.org

1, 2, 3, 4, 2, 2, 5, 6, 2, 3, 7, 8, 2, 4, 2, 2, 2, 9, 3, 3, 10, 2, 5, 11, 12, 2, 6, 3, 4, 2, 2, 3, 13, 14, 2, 7, 15, 3, 5, 16, 2, 8, 4, 4, 2, 2, 4, 2, 2, 2, 2, 17, 18, 2, 9, 3, 6, 2, 3, 3, 19, 20, 2, 10, 4, 5, 2, 2, 5, 21, 3, 7, 22, 2, 11, 23, 24, 2, 12, 3, 8, 4, 6, 2, 2, 6, 2, 3, 4, 2, 2, 2, 3, 25, 5, 5
Offset: 1

Views

Author

T. D. Noe, Jun 28 2009

Keywords

Comments

Row n begins with n because it is a factorization of length 1. In each factorization, the factors are in nondecreasing order. This sequence is A056472 with the factorizations in a different order. Sequence A001055(n) gives the number of factorizations of n; A066637(n) gives the number of numbers in row n. In the Mathematica program, the function f returns a list of the factorizations of n.
These factorizations are useful in determining the forms of numbers that have a given number of divisors. For example, to find the forms of numbers that have 12 divisors, we look at the four factorizations of 12 (12, 2*6, 3*4, 2*2*3), subtract 1 from each factor, and find the forms to be p^11, p q^5, p^2 q^3, and p q r^2, where p, q, and r are prime numbers.

Examples

			1;
2;
3;
4,2*2;
5;
6,2*3;
7;
8,2*4,2*2*2;
9,3*3;
10,2*5;
11;
12,2*6,3*4,2*2*3;
		

References

Crossrefs

Programs

  • Haskell
    import Data.List (sortBy)
    import Data.Ord (comparing)
    a162247 n k = a162247_tabl !! (n-1) !! (k-1)
    a162247_row n = a162247_tabl !! (n-1)
    a162247_tabl = map (concat . sortBy (comparing length)) $ tail fss where
       fss = [] : map fact [1..] where
             fact x = [x] : [d : fs | d <- [2..x], let (x',r) = divMod x d,
                                      r == 0, fs <- fss !! x', d <= head fs]
    -- Reinhard Zumkeller, Jan 08 2013
  • Mathematica
    g[lst_,p_] := Module[{t,i,j}, Union[Flatten[Table[t=lst[[i]]; t[[j]]=p*t[[j]]; Sort[t], {i,Length[lst]}, {j,Length[lst[[i]]]}], 1], Table[Sort[Append[lst[[i]],p]], {i,Length[lst]}]]]; f[n_] := Module[{i,j,p,e,lst={{}}}, {p,e}=Transpose[FactorInteger[n]]; Do[lst=g[lst,p[[i]]], {i,Length[p]}, {j,e[[i]]}]; lst]; Flatten[Table[f[n], {n,25}]]

A339564 Number of ways to choose a distinct factor in a factorization of n (pointed factorizations).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 7, 1, 3, 3, 7, 1, 7, 1, 7, 3, 3, 1, 14, 2, 3, 4, 7, 1, 10, 1, 12, 3, 3, 3, 17, 1, 3, 3, 14, 1, 10, 1, 7, 7, 3, 1, 26, 2, 7, 3, 7, 1, 14, 3, 14, 3, 3, 1, 25, 1, 3, 7, 19, 3, 10, 1, 7, 3, 10, 1, 36, 1, 3, 7, 7, 3, 10, 1, 26, 7, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2021

Keywords

Examples

			The pointed factorizations of n for n = 2, 4, 6, 8, 12, 24, 30:
  ((2))  ((4))    ((6))    ((8))      ((12))     ((24))       ((30))
         ((2)*2)  ((2)*3)  ((2)*4)    ((2)*6)    ((3)*8)      ((5)*6)
                  (2*(3))  (2*(4))    (2*(6))    (3*(8))      (5*(6))
                           ((2)*2*2)  ((3)*4)    ((4)*6)      ((2)*15)
                                      (3*(4))    (4*(6))      (2*(15))
                                      ((2)*2*3)  ((2)*12)     ((3)*10)
                                      (2*2*(3))  (2*(12))     (3*(10))
                                                 ((2)*2*6)    ((2)*3*5)
                                                 (2*2*(6))    (2*(3)*5)
                                                 ((2)*3*4)    (2*3*(5))
                                                 (2*(3)*4)
                                                 (2*3*(4))
                                                 ((2)*2*2*3)
                                                 (2*2*2*(3))
		

Crossrefs

The additive version is A000070 (strict: A015723).
The unpointed version is A001055 (strict: A045778, ordered: A074206, listed: A162247).
Allowing point (1) gives A057567.
Choosing a position instead of value gives A066637.
The ordered additive version is A336875.
A000005 counts divisors.
A001787 count normal multisets with a selected position.
A001792 counts compositions with a selected position.
A006128 counts partitions with a selected position.
A066186 count strongly normal multisets with a selected position.
A254577 counts ordered factorizations with a selected position.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Sum[Length[Union[fac]],{fac,facs[n]}],{n,50}]

Formula

a(n) = A057567(n) - A001055(n).
a(n) = Sum_{d|n, d>1} A001055(n/d).

A342193 Numbers with no prime index dividing all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2021

Keywords

Comments

Alternative name: 1 and numbers with smallest prime index not dividing all the other prime indices.
First differs from A339562 in having 45.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also 1 and Heinz numbers of integer partitions with smallest part not dividing all the others (counted by A338470). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      201: {2,19}
     15: {2,3}      119: {4,7}        203: {4,10}
     33: {2,5}      123: {2,13}       205: {3,13}
     35: {3,4}      135: {2,2,2,3}    207: {2,2,9}
     45: {2,2,3}    141: {2,15}       209: {5,8}
     51: {2,7}      143: {5,6}        215: {3,14}
     55: {3,5}      145: {3,10}       217: {4,11}
     69: {2,9}      153: {2,2,7}      219: {2,21}
     75: {2,3,3}    155: {3,11}       221: {6,7}
     77: {4,5}      161: {4,9}        225: {2,2,3,3}
     85: {3,7}      165: {2,3,5}      231: {2,4,5}
     91: {4,6}      175: {3,3,4}      245: {3,4,4}
     93: {2,11}     177: {2,17}       247: {6,8}
     95: {3,8}      187: {5,7}        249: {2,23}
     99: {2,2,5}    195: {2,3,6}      253: {5,9}
		

Crossrefs

The complement is counted by A083710 (strict: A097986).
The complement with no 1's is A083711 (strict: A098965).
These partitions are counted by A338470 (strict: A341450).
The squarefree case is A339562, with squarefree complement A339563.
The case with maximum prime index not divisible by all others is A343338.
The case with maximum prime index divisible by all others is A343339.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A006128 counts partitions with a selected position (strict: A015723).
A056239 adds up prime indices, row sums of A112798.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]

A372053 Irregular array read by rows: row n lists the factorizations of n into a product of nondecreasing integers >= 2.

Original entry on oeis.org

2, 3, 2, 2, 4, 5, 2, 3, 6, 7, 2, 2, 2, 2, 4, 8, 3, 3, 9, 2, 5, 10, 11, 2, 2, 3, 2, 6, 3, 4, 12, 13, 2, 7, 14, 3, 5, 15, 2, 2, 2, 2, 2, 2, 4, 2, 8, 4, 4, 16, 17, 2, 3, 3, 2, 9, 3, 6, 18, 19, 2, 2, 5, 2, 10, 4, 5, 20, 3, 7, 21, 2, 11, 22, 23, 2, 2, 2, 3, 2, 2, 6, 2, 3, 4, 2, 12, 3, 8, 4, 6, 24, 5, 5, 25, 2, 13, 26, 3, 3, 3, 3, 9, 27, 2, 2, 7, 2, 14, 4, 7, 28, 29, 2, 3, 5, 2, 15, 3, 10, 5, 6, 30
Offset: 2

Views

Author

N. J. A. Sloane, Apr 22 2024, following a suggestion from Scott R. Shannon

Keywords

Comments

Factorizations of n are ordered lexicographically. Compare A162247.

Examples

			The factorizations of the numbers 2 through 24 are:
  2;
  3;
  2, 2;  4;
  5;
  2, 3;  6;
  7;
  2, 2, 2;  2, 4;  8;
  3, 3;  9;
  2, 5;  10;
  11;
  2, 2, 3;  2, 6;  3, 4;  12;
  13;
  2, 7;  14;
  3, 5;  15;
  2, 2, 2, 2;  2, 2, 4;  2, 8;  4, 4;  16;
  17;
  2, 3, 3;  2, 9;  3, 6;  18;
  19;
  2, 2, 5;  2, 10;  4, 5;  20;
  3, 7;  21;
  2, 11;  22;
  23;
  2, 2, 2, 3;  2, 2, 6;  2, 3, 4;  2, 12;  3, 8;  4, 6;  24;
		

Crossrefs

Cf. A001055, A027746, A066637 (row lengths), A162247.

Programs

  • Mathematica
    f[x_] := If[x <= 1, {{}}, Join @@ Table[Map[Prepend[#, d] &, Select[f[x/d], Min @@ # >= d &]], {d, Rest@ Divisors[x]}]]; Array[Flatten @* f, 29, 2] // Flatten (* Michael De Vlieger, Apr 22 2024 *)

Extensions

The DATA section is longer than usual in order to show the factorizations of 30.
Edited by Peter Munn, Feb 26 2025

A076277 Number of product signs needed to write all the factorizations of n with all factors > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 3, 1, 1, 0, 4, 0, 1, 1, 7, 0, 4, 0, 4, 1, 1, 0, 10, 1, 1, 3, 4, 0, 5, 0, 13, 1, 1, 1, 13, 0, 1, 1, 10, 0, 5, 0, 4, 4, 1, 0, 22, 1, 4, 1, 4, 0, 10, 1, 10, 1, 1, 0, 16, 0, 1, 4, 24, 1, 5, 0, 4, 1, 5, 0, 30, 0, 1, 4, 4, 1, 5, 0, 22, 7, 1, 0, 16, 1, 1, 1, 10, 0, 16, 1, 4, 1, 1, 1, 42, 0
Offset: 1

Views

Author

Remco van Sabben (pvsabben(AT)stwillibrord.nl), Oct 04 2002

Keywords

Examples

			12 = 3*4 = 2*6 = 2*2*3, 4 product signs are needed, so a(12) = 4.
24 = 12*2 = 6*2*2 = 4*3*2 = 3*2*2*2 = 8*3 = 6*4 with 10 multiplies so a(24) = 10.
		

Crossrefs

Programs

  • Mathematica
    g[1, r_] := g[1, r]={1, 0}; g[n_, r_] := g[n, r]=Module[{ds, i, val}, ds=Select[Divisors[n], 1<#<=r&]; val={0, 0}+Sum[g[n/ds[[i]], ds[[i]]], {i, 1, Length[ds]}]; val+{0, val[[1]]}]; a[1]=0; a[n_] := g[n, n][[2]]-g[n, n][[1]]; a/@Range[97] (* g[n, r] = {c, f}, where c is the number of factorizations of n with factors <= r and f is the total number of factors in them. - Dean Hickerson, Oct 10 2002 *)
  • PARI
    A076277(n) = a(n,0);
    a(n, k=0) = if(k<=0, a(n, 2)[2], if(n<=1||k>n, [0, 0], [1, 0]+sumdiv(n, d, if(d>=max(2, k)&&d<=n/d, a(n/d, d)*[1, 1; 0, 1], [0, 0])))); \\ From the original author. | and & replaced with || and && to conform with modern PARI-systems. - Antti Karttunen, May 25 2017

Formula

a(n) = A066637(n) - A001055(n) for n > 1. - Henry Bottomley, Oct 10 2002

Extensions

More terms from Robert G. Wilson v and Michael Somos, Oct 08 2002

A174524 The total number of factors in unordered factorizations of A025487(n).

Original entry on oeis.org

0, 1, 3, 3, 6, 8, 12, 17, 10, 20, 22, 34, 27, 35, 46, 61, 60, 54, 94, 75, 107, 37, 101, 123, 86, 170, 170, 176, 104, 207, 230, 128, 304, 356, 284, 242, 386, 217, 413, 192, 397, 506, 303, 434, 680, 442, 512, 698, 502, 703, 275, 847, 832, 151, 725, 818, 1244, 676, 993, 1190, 1079, 1162, 399, 1654, 1311, 446, 1572, 1501, 1207, 2158, 1007, 917, 1840, 1831, 1980, 2104, 1785, 1859, 1579, 556
Offset: 1

Views

Author

Alford Arnold, Mar 21 2010

Keywords

Comments

A025487(n) has a certain number of unordered factorizations with between 1 and A001222(A025487(n)) factors.
a(n) counts these factors that are > 1. A025487(5) counts 8, 2*4, 2*2*2 with 1+2+3 = 6 = a(5) factors, for example.

Examples

			The table of factorizations in A162247 begins:
  1
  2
  3
  4 2 2
  5
  6 2 3
  7
  8 2 4 2 2 2
  9 3 3
  10 2 5
  11
  12 2 6 3 4 2 2 3
A025487(n) begins 1 2 4 6 8 12 ...
a(n) counts the elements larger than 1 in the A025487(n)-th row of A162247: 0 1 3 3 6 8 ...
		

Crossrefs

Formula

a(n) = A066637(A025487(n)). - R. J. Mathar, Oct 03 2010

Extensions

a(1) corrected and data extended by R. J. Mathar, Oct 03 2010
Showing 1-7 of 7 results.