cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A372029 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nondecreasing order.

Original entry on oeis.org

12, 25, 35, 111, 112, 125, 222, 245, 333, 335, 445, 1225, 2225, 11125, 33445, 334445, 3333335, 3334445, 3444445, 33333445, 333333335, 334444445, 3333333335, 33333334445, 333333333335, 33333333334445, 33333333444445, 444444444444445, 2222222222222225, 11111111111111125
Offset: 1

Views

Author

Scott R. Shannon, Apr 16 2024

Keywords

Comments

Terms cannot end in 4, 6, 8, or 9 because 2 would be a factor and no prime consists entirely of 9's. - Michael S. Branicky, Apr 22 2024

Examples

			The initial terms and their factorizations are:
   12 = [2, 2, 3]
   25 = [5, 5]
   35 = [5, 7]
   111 = [3, 37]
   112 = [2, 2, 2, 2, 7]
   125 = [5, 5, 5]
   222 = [2, 3, 37]
   245 = [5, 7, 7]
   333 = [3, 3, 37]
   335 = [5, 67]
   445 = [5, 89]
   1225 = [5, 5, 7, 7]
   2225 = [5, 5, 89]
   11125 = [5, 5, 5, 89]
   33445 = [5, 6689]
   334445 = [5, 66889]
   3333335 = [5, 666667]
   3334445 = [5, 666889]
   3444445 = [5, 688889]
   33333445 = [5, 6666689]
   333333335 = [5, 66666667]
   334444445 = [5, 66888889]
   ...
12 is a term since the list L(12) is [12,2,2,3], in which the digits 1,2,2,2,3 are in nondecreasing order.
121 is not a term since L(121) = [121,11,11], and the digits 1,2,1,1,1,1,1 are not in nondecreasing order.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    def nd(s): return sorted(s) == list(s)
    def ok(n):
        if n < 4 or isprime(n): return False
        s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items())
        return nd(s+f)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Apr 22 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import factorint, isprime
    from itertools import count, islice, combinations_with_replacement as mc
    def nd(s): return s == "".join(sorted(s))
    def bgen(d): # can't end in 8 or 9
        yield from ("".join(m) for m in mc("1234567", d))
    def agen(): # generator of terms
        for d in count(2):
            for s in bgen(d):
                t = int(s)
                if any(s[-1] > c and t%int(c) == 0 for c in "2357"): continue
                if isprime(t): continue
                if nd(s+"".join(str(p)*e for p, e in factorint(t).items())):
                    yield t
    print(list(islice(agen(), 25))) # Michael S. Branicky, Apr 22 2024

Extensions

a(25) and beyond from Michael S. Branicky, Apr 22 2024

A372034 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of L(k) are in nonincreasing order.

Original entry on oeis.org

4, 8, 9, 22, 32, 33, 44, 55, 64, 77, 88, 93, 99, 422, 633, 775, 844, 933, 993, 4222, 4442, 6333, 6655, 6663, 7533, 7744, 7775, 8444, 8884, 9663, 9993, 44222, 66333, 88444, 99633, 99933, 99993, 933333, 966333, 996663, 999993, 4442222, 6663333, 7777775, 8884444, 9663333, 9666633, 9666663
Offset: 1

Views

Author

Scott R. Shannon, Apr 16 2024

Keywords

Comments

Is it true that no terms end with 1? A separate search on those shows none with < 70 digits. Michael S. Branicky, Apr 23 2024
Testing all products of repunit primes (A004022, A004023), there are no terms ending in 1 less than 10^3000. - Michael S. Branicky, Apr 24 2024

Examples

			The initial terms and their factorizations are:
4 = [2, 2]
8 = [2, 2, 2]
9 = [3, 3]
22 = [2, 11]
32 = [2, 2, 2, 2, 2]
33 = [3, 11]
44 = [2, 2, 11]
55 = [5, 11]
64 = [2, 2, 2, 2, 2, 2]
77 = [7, 11]
88 = [2, 2, 2, 11]
93 = [3, 31]
99 = [3, 3, 11]
422 = [2, 211]
633 = [3, 211]
775 = [5, 5, 31]
844 = [2, 2, 211]
933 = [3, 311]
993 = [3, 331]
4222 = [2, 2111]
4442 = [2, 2221]
6333 = [3, 2111]
6655 = [5, 11, 11, 11]
6663 = [3, 2221]
7533 = [3, 3, 3, 3, 3, 31]
7744 = [2, 2, 2, 2, 2, 2, 11, 11]
...
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    def ni(s): return sorted(s, reverse=True) == list(s)
    def ok(n):
        if n < 4 or isprime(n): return False
        s, f = str(n), "".join(str(p)*e for p, e in factorint(n).items())
        return ni(s+f)
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 23 2024
    
  • Python
    # faster for initial segment of sequence
    from sympy import factorint, isprime
    from itertools import islice, combinations_with_replacement as mc
    def ni(s): return s == "".join(sorted(s, reverse=True))
    def bgen(d):
        yield from ("".join(m) for m in mc("987654321", d))
    def agen(): # generator of terms
        for d in range(1, 70):
            out = set()
            for s in bgen(d):
                t = int(s)
                if t < 4 or isprime(t): continue
                if ni(s+"".join(str(p)*e for p, e in factorint(t).items())):
                    out.add(t)
            yield from sorted(out)
    print(list(islice(agen(), 50))) # Michael S. Branicky, Apr 23 2024

A372249 The smallest number k which, when written in base n, has a factorization k = f1*f2*...*fr where the digits of {k, f1, f2, ..., fr} together contain the digits 0,1,...,(n-1) exactly once. Set a(n) = -1 if no such k exists.

Original entry on oeis.org

297, 440, 1440, 8596, 15552, 121638, 282240, 1039104, 5757696, 24108000
Offset: 7

Views

Author

Scott R. Shannon, Apr 24 2024

Keywords

Comments

The offset begins at 7 as in bases 2..6 no term exists.
Assumes all factors f_i > 1. If f_i = 1 is allowed, then a(7) = 104 = 1*4*26, a(10) = 4830 = 1*2*5*7*69, a(12) = 72240 = 1*4*6*7*430, a(15) = 4244940 = 1*2*3*7*9*10*1123, ... - Chai Wah Wu, Apr 24 2024

Examples

			The terms and their factorizations are:
a(7) = 297 = [9, 33] = 603_7 = [12_7, 45_7] = "6031245" which contains all digits 0..6 once.
a(8) = 440 = [2, 4, 5, 11] = 670_8 = [2_8, 4_8, 5_8, 13_8] = "67024513" which contains all digits 0..7 once.
a(9) = 1440 = [3, 4, 5, 24] = 1870_9 = [3_9, 4_9, 5_9, 26_9] = "187034526" which contains all digits 0..8 once.
a(10) = 8596 = [2, 14, 307] = "8596214307" which contains all digits 0..9 once. See also A370970.
a(11) = 15552 = [2, 3, 6, 8, 54] = 10759_11 = [2_11, 3_11, 6_11, 8_11, 4a_11] = "1075923684a" which contains all digits 0..a once.
a(12) = 121638 = [2, 3, 11, 1843] = 5a486_12 = [2_12, 3_12, b_12, 1097_12] = "5a48623b1097" which contains all digits 0..b once.
a(13) = 282240 = [2, 3, 5, 7, 21, 64] = 9b60a_13 = [2_13, 3_13, 5_13, 7_13, 18_13, 4c_13] = "9b60a2357184c" which contains all digits 0..c once.
a(14) = 1039104 = [2, 3, 4, 6, 8, 11, 82] = 1d097a_14 = [2_14, 3_14, 4_14, 6_14, 8_14, b_14, 5c_14] = "1d097a23468b5c" which contains all digits 0..d once.
From _Chai Wah Wu_, Apr 24 2024: (Start)
a(15) = 5757696 = [2, 3, 4, 12, 84, 238] = 78aeb6_15 = [2_15, 3_15, 4_15, c_15, 59_15, 10d_15] = "78aeb6234c5910d" which contains all digits 0..e once.
a(16) = 24108000 = [3, 4, 5, 7, 10, 41, 140] = 16fdbe0_16 = [3_16, 4_16, 5_16, 7_16, a_16, 29_16, 8c_16] = "16fdbe03457a298c" which contains all digits 0..f once. (End)
		

Crossrefs

Extensions

a(15)-a(16) from Chai Wah Wu, Apr 24 2024
Added escape clause to definition at the suggestion of Chai Wah Wu. - N. J. A. Sloane, Apr 25 2024

A380760 Integers k with at least one proper factorization for which the sum of the same fixed integer power >= 2 of the factors equals k.

Original entry on oeis.org

16, 27, 48, 54, 256, 270, 528, 1134, 1755, 2916, 3125, 7216, 7830, 11520, 11934, 15360, 19683, 22464, 30000, 31752, 40095, 40960, 46656, 65536, 69168, 81702, 86436, 93555, 100368, 146880, 200000, 212400, 264654, 273600, 291060, 303030, 317520, 340470, 362880
Offset: 1

Views

Author

Charles L. Hohn, Feb 02 2025

Keywords

Comments

Superset of A381538 for values >= 16, and it is conjectured that the terms that match multiple nonequivalent factorizations here, such as a(5) = 256 (see Example), are exactly the terms of A381538 that can be produced as m^(m^e) by multiple m.

Examples

			a(1) = 16: 2 * 2 * 2 * 2 = 2^2 + 2^2 + 2^2 + 2^2 = 16.
a(5) = 256: 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 = 256, and also 4 * 4 * 4 * 4 = 4^3 + 4^3 + 4^3 + 4^3 = 256.
a(8) = 1134: 2 * 3 * 3 * 7 * 9 = 2^3 + 3^3 + 3^3 + 7^3 + 9^3 = 1134.
		

Crossrefs

Sums of squares only: A380902.

Programs

  • PARI
    a380760_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, my(c=0); for(p=2, oo, my(t=sum(i=1, #f, f[i]^p)); if(tCharles L. Hohn, Mar 09 2025

Extensions

Edited by Peter Munn, Mar 25 2025

A372151 For a positive number k, let L(k) denote the list consisting of k followed by the prime factors of k, with repetition, in nondecreasing order; sequence gives composite k such that the digits of k is either 3, 4 or 5 and the digits of L(k) are in nondecreasing order.

Original entry on oeis.org

35, 333, 335, 445, 33445, 334445, 3333335, 3334445, 3444445, 33333445, 333333335, 334444445, 3333333335, 33333334445, 333333333335, 33333333334445, 33333333444445, 444444444444445, 333333334444444445, 333334444444444445, 444444444444444445, 3333333333333444445
Offset: 1

Views

Author

Chai Wah Wu, Apr 26 2024

Keywords

Comments

Subsequence of A372029. Sequence is inspired by the observation that most terms in A372029 so far contain only the digits 3, 4 and 5.

Examples

			   35 = 5*7
  333 = 3*3*37
  335 = 5*67
  445 = 5*89
33445 = 5*6689
333333333333333333333333444444444444444444444445 = 5*66666666666666666666666688888888888888888888889
		

Crossrefs

Programs

  • Python
    from itertools import count, islice, combinations_with_replacement
    from sympy import isprime, factorint
    def A372151_gen(): # generator of terms
        for l in count(1):
            for d in combinations_with_replacement('345',l):
                a, n = d[-1], int(''.join(d))
                if not isprime(n):
                    for p in factorint(n,multiple=True):
                        s = str(p)
                        if s[0] < a or sorted(s) != list(s):
                            break
                        a = s[-1]
                    else:
                        yield n
    A372151_list = list(islice(A372151_gen(),20))

A372294 The smallest number k which, when written in base n, has a factorization k = f_1*f_2*...*f_r where f_i >= 1 and the digits of {k, f_1, f_2, ..., f_r} together contain the digits 0,1,...,(n-1) exactly once. Set a(n) = -1 if no such k exists.

Original entry on oeis.org

-1, -1, -1, -1, -1, 104, 440, 1440, 4830, 15552, 72240, 282240, 1039104, 4244940, 24108000
Offset: 2

Views

Author

Chai Wah Wu, Apr 25 2024

Keywords

Comments

Similar to A372249, except that here the factors are allowed to be equal to 1. Differs from A372249 at n = 7, 10, 12, 15, ...

Examples

			a(7)  =      104 = 1*4*26
a(8)  =      440 = 2*4*5*11
a(9)  =     1440 = 3*4*5*24
a(10) =     4830 = 1*2*5*7*69
a(11) =    15552 = 2*3*6*8*54
a(12) =    72240 = 1*4*6*7*430
a(13) =   282240 = 2*3*5*7*21*64
a(14) =  1039104 = 2*3*4*6*8*11*82
a(15) =  4244940 = 1*2*3*7*9*10*1123
a(16) = 24108000 = 3*4*5*7*10*41*140
		

Crossrefs

Formula

a(n) <= A372249(n).
Showing 1-6 of 6 results.