cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070745 Numbers z such that the Diophantine equation x^2 + y^3 = z^2 has solutions with x, y > 0.

Original entry on oeis.org

3, 6, 10, 14, 15, 17, 21, 24, 28, 29, 35, 36, 42, 43, 45, 48, 55, 57, 60, 62, 63, 66, 76, 78, 80, 81, 90, 91, 99, 105, 112, 118, 119, 120, 123, 127, 129, 132, 136, 140, 141, 143, 147, 153, 154, 155, 161, 162, 165, 168, 171, 172, 179, 185, 190, 192, 195, 209, 210
Offset: 1

Views

Author

Benoit Cloitre, May 14 2002

Keywords

Examples

			42 is in the sequence because 6^2 + 12^3 = 42^2.
		

Crossrefs

Cf. A066647.

Programs

  • Mathematica
    q[n_] := Length[Reduce[a^2 + b^3 == n^2 && a > 0 && b > 0, {a, b}, Integers]] > 0; Select[Range[210], q] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    for(n=0,350,if(sum(i=1,n,sum(j=1,n,if(i^2+j^3-n^2,0,1)))>0,print1(n,",")))

Formula

a(n) = sqrt(A066647(n)). - Amiram Eldar, Mar 20 2025

Extensions

Corrected and edited by John W. Layman, May 21 2002

A066648 Cubes of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

512, 1000, 2744, 21952, 32768, 35937, 64000, 175616, 185193, 274625, 357911, 373248, 405224, 474552, 729000, 1157625, 1404928, 1481544, 2000376, 2097152, 2197000, 2299968, 2744000, 3241792, 3652264, 3723875, 4096000, 5451776, 7189057, 8000000, 10218313, 10360232
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Examples

			8^3 = a(0) = 512 = 169 + 343 = 13^2 + 7^3;
10^3 = a(1) = 1000 = 784 + 216 = 28^2 + 6^3.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := Length[Reduce[a^2 + b^3 == n && a > 0 && b > 0, {a, b}, Integers]] > 0; Select[Range[220]^3, q] (* Amiram Eldar, Mar 20 2025 *)

Formula

a(n) = A228946(n)^3. - R. J. Mathar, Dec 03 2015
Showing 1-2 of 2 results.