cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066649 Primes of the form a^2 + b^3 with a, b > 0.

Original entry on oeis.org

2, 5, 17, 31, 37, 43, 73, 89, 101, 113, 127, 197, 223, 233, 241, 257, 269, 283, 337, 347, 353, 359, 379, 401, 443, 449, 487, 521, 577, 593, 599, 677, 701, 733, 743, 811, 827, 829, 919, 953, 1009, 1019, 1049, 1051, 1097, 1129, 1153, 1213, 1289, 1297, 1361
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2001

Keywords

Examples

			A000040(26) = 101 = 10^2 + 1^3, therefore 101 is a term.
A000040(51) = a(13) = 233 = 225 + 8 = 15^2 + 2^3.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[Do[p=n^2+m^3;If[PrimeQ[p],AppendTo[lst,p]],{n,5!}],{m,5!}];Take[Union[lst],123] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
  • PARI
    list(lim)=my(v=List()); for(y=1,sqrtnint(lim\=1,3), my(y3=y^3); for(x=1,sqrtint(lim-y3), my(p=y3+x^2); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Mar 11 2025

Formula

On Conjecture C_a(1/17), this sequence is infinite and a(n) << n^(6/5) log n, see Merikoski link. - Charles R Greathouse IV, Mar 11 2025