A066649 Primes of the form a^2 + b^3 with a, b > 0.
2, 5, 17, 31, 37, 43, 73, 89, 101, 113, 127, 197, 223, 233, 241, 257, 269, 283, 337, 347, 353, 359, 379, 401, 443, 449, 487, 521, 577, 593, 599, 677, 701, 733, 743, 811, 827, 829, 919, 953, 1009, 1019, 1049, 1051, 1097, 1129, 1153, 1213, 1289, 1297, 1361
Offset: 1
Keywords
Examples
A000040(26) = 101 = 10^2 + 1^3, therefore 101 is a term. A000040(51) = a(13) = 233 = 225 + 8 = 15^2 + 2^3.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Jori Merikoski, On primes represented by aX^2+bY^3aX^2+bY^3, arXiv preprint (2025). arXiv:2503.05396 [math.NT]
Programs
-
Mathematica
lst={};Do[Do[p=n^2+m^3;If[PrimeQ[p],AppendTo[lst,p]],{n,5!}],{m,5!}];Take[Union[lst],123] (* Vladimir Joseph Stephan Orlovsky, May 24 2009 *)
-
PARI
list(lim)=my(v=List()); for(y=1,sqrtnint(lim\=1,3), my(y3=y^3); for(x=1,sqrtint(lim-y3), my(p=y3+x^2); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Mar 11 2025
Formula
On Conjecture C_a(1/17), this sequence is infinite and a(n) << n^(6/5) log n, see Merikoski link. - Charles R Greathouse IV, Mar 11 2025