A066667 Coefficient triangle of generalized Laguerre polynomials (a=1).
1, 2, -1, 6, -6, 1, 24, -36, 12, -1, 120, -240, 120, -20, 1, 720, -1800, 1200, -300, 30, -1, 5040, -15120, 12600, -4200, 630, -42, 1, 40320, -141120, 141120, -58800, 11760, -1176, 56, -1, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016
Offset: 0
Examples
Triangle a(n,m) begins n\m 0 1 2 3 4 5 6 7 8 0: 1 1: 2 -1 2: 6 -6 1 3: 24 -36 12 -1 4: 120 -240 120 -20 1 5: 720 -1800 1200 -300 30 -1 6: 5040 -15120 12600 -4200 630 -42 1 7: 40320 -141120 141120 -58800 11760 -1176 56 -1 8: 362880 -1451520 1693440 -846720 211680 -28224 2016 -72 1 9: 3628800, -16329600, 21772800, -12700800, 3810240, -635040, 60480, -3240, 90, -1. Reformatted and extended by _Wolfdieter Lang_, Jan 31 2013. From _Wolfdieter Lang_, Jan 31 2013 (Start) Recurrence (standard): a(4,2) = 2*4*12 - (-36) - 4*3*1 = 120. Recurrence (simple): a(4,2) = 7*12 - (-36) = 120. (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 778 (22.5.17).
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 95 (4.1.62)
- R. Witula, E. Hetmaniok, and D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 >= n >= 150, flattened).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 778 (22.5.17).
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Programs
-
Maple
A066667 := (n, k) -> (-1)^k*binomial(n, k)*(n + 1)!/(k + 1)!: for n from 0 to 9 do seq(A066667(n,k), k = 0..n) od; # Peter Luschny, Jun 22 2022
-
Mathematica
Table[(-1)^m*Binomial[n, m]*(n + 1)!/(m + 1)!, {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2019 *)
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, 1)); \\ Michel Marcus, Feb 06 2021
Formula
E.g.f. (relative to x, keep y fixed): A(x)=(1/(1-x))^2*exp(x*y/(x-1)).
From Wolfdieter Lang, Jan 31 2013: (Start)
a(n,m) = (-1)^m*binomial(n,m)*(n+1)!/(m+1)!, n >= m >= 0. [corrected by Georg Fischer, Oct 26 2022]
Recurrence from standard three term recurrence for orthogonal generalized Laguerre polynomials {P(n,x):=n!*L(1,n,x)}:
P(n,x) = (2*n-x)*P(n-1,x) - n*(n-1)*P(n-2), n>=1, P(-1,x) = 0, P(0,x) = 1.
a(n,m) = 2*n*a(n-1,m) - a(n-1,m-1) - n*(n-1)*a(n-2,m), n>=1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < m.
Simplified recurrence from explicit form of a(n,m):
a(n,m) = (n+m+1)*a(n-1,m) - a(n-1,m-1), n >= 1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < m.
(End)
Comments