A066708 Least m such that n = m mod tau(m) if such m exists, otherwise 0.
3, 6, 15, 28, 165, 30, 135, 48, 144, 192, 1755, 300, 1485, 270, 2079, 336, 6237, 1008, 9639, 1728, 1296, 3510, 28215, 1080, 16900, 2970, 10395, 7840, 12285, 4158, 41055, 4752, 40425, 12474, 48195, 3780, 220077, 19278, 51975, 10920, 356265, 9450
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..270
Crossrefs
Cf. A000005.
Programs
-
Mathematica
Module[{nn=500000,mtm},mtm=Table[{m,Mod[m,DivisorSigma[0,m]]},{m,nn}];Table[ SelectFirst[mtm,#[[2]]==n&],{n,50}]][[All,1]] (* Harvey P. Dale, Jan 10 2023 *)
-
Python
from itertools import count from sympy import divisor_count def A066708(n): return next(filter(lambda m:m%divisor_count(m)==n,count(n))) # Chai Wah Wu, Mar 14 2023
Comments