cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066710 RATS: Reverse Add Then Sort the digits applied to previous term, starting with 3.

Original entry on oeis.org

3, 6, 12, 33, 66, 123, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333
Offset: 1

Views

Author

N. J. A. Sloane, Jan 19 2002

Keywords

Comments

a(1) = A114614(1) = 3; A114611(3) = 8. [Reinhard Zumkeller, Mar 14 2012]

Examples

			668 -> 668 + 866 = 1534 -> 1345.
		

Crossrefs

Programs

  • Haskell
    a066710_list = iterate a036839 3  -- Reinhard Zumkeller, Mar 14 2012
  • Mathematica
    f[k_] := Module[{m = FromDigits[Reverse[IntegerDigits[k]]]}, FromDigits[ Sort[ IntegerDigits[k + m]]]]; NestList[f, 3, 50] (* Harvey P. Dale, Jan 18 2011 *)

Formula

Let a(n) = k, form m by Reversing the digits of k, Add m to k Then Sort the digits of the sum into increasing order to get a(n+1).
Periodic with period 8.
a(n+1) = A036839(a(n)). [Reinhard Zumkeller, Mar 14 2012]
From Chai Wah Wu, Feb 07 2020: (Start)
a(n) = a(n-8) for n > 14.
G.f.: x*(-99*x^13 - 45*x^12 - 44523*x^11 - 12321*x^10 - 3483*x^9 - 1674*x^8 - 888*x^7 - 444*x^6 - 123*x^5 - 66*x^4 - 33*x^3 - 12*x^2 - 6*x - 3)/(x^8 - 1). (End)