A066710 RATS: Reverse Add Then Sort the digits applied to previous term, starting with 3.
3, 6, 12, 33, 66, 123, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333, 44556, 111, 222, 444, 888, 1677, 3489, 12333
Offset: 1
Examples
668 -> 668 + 866 = 1534 -> 1345.
Links
- R. K. Guy, Conway's RATS and other reversals, Amer. Math. Monthly, 96 (1989), 425-428.
- Eric Weisstein's World of Mathematics, RATS Sequence
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Programs
-
Haskell
a066710_list = iterate a036839 3 -- Reinhard Zumkeller, Mar 14 2012
-
Mathematica
f[k_] := Module[{m = FromDigits[Reverse[IntegerDigits[k]]]}, FromDigits[ Sort[ IntegerDigits[k + m]]]]; NestList[f, 3, 50] (* Harvey P. Dale, Jan 18 2011 *)
Formula
Let a(n) = k, form m by Reversing the digits of k, Add m to k Then Sort the digits of the sum into increasing order to get a(n+1).
Periodic with period 8.
a(n+1) = A036839(a(n)). [Reinhard Zumkeller, Mar 14 2012]
From Chai Wah Wu, Feb 07 2020: (Start)
a(n) = a(n-8) for n > 14.
G.f.: x*(-99*x^13 - 45*x^12 - 44523*x^11 - 12321*x^10 - 3483*x^9 - 1674*x^8 - 888*x^7 - 444*x^6 - 123*x^5 - 66*x^4 - 33*x^3 - 12*x^2 - 6*x - 3)/(x^8 - 1). (End)
Comments