cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084354 Primes whose product of nonzero digits + 1 is prime.

Original entry on oeis.org

2, 11, 23, 29, 41, 43, 47, 61, 67, 89, 101, 149, 163, 167, 211, 223, 227, 229, 233, 251, 257, 263, 269, 281, 349, 367, 383, 401, 409, 419, 431, 433, 439, 463, 491, 521, 523, 569, 587, 601, 607, 613, 617, 631, 643, 659, 661, 673, 761, 769, 809, 821, 827, 857
Offset: 1

Views

Author

Jason Earls, Jun 22 2003

Keywords

Crossrefs

Cf. A066725.

Programs

  • Maple
    filter:= proc(n) local p;
       if not isprime(n) then return false fi;
       p:= 1+ convert(subs(0=NULL, convert(n,base,10)),`*`);
       isprime(p)
    end proc:
    select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Mar 06 2018
  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[1+Times@@Select[idn,#>0&]]]
    Select[Prime[Range[150]],okQ]  (* Harvey P. Dale, Jan 20 2011 *)

A087340 Primes p such that the sum of the digits of p as well as 1 plus the product of its digits are also primes.

Original entry on oeis.org

2, 11, 23, 29, 41, 43, 47, 61, 67, 89, 223, 227, 229, 263, 269, 281, 463, 643, 661, 821, 827, 883, 887, 1123, 1129, 1163, 1213, 1231, 1237, 1279, 1291, 1297, 1321, 1327, 1361, 1367, 1433, 1439, 1453, 1459, 1471, 1493, 1523, 1543, 1549, 1567, 1613, 1637
Offset: 1

Views

Author

Amarnath Murthy, Sep 06 2003

Keywords

Crossrefs

Cf. A087339.

Programs

  • Magma
    [p: p in PrimesUpTo(1700) | IsPrime(&+Intseq(p)) and IsPrime(1+&*Intseq(p))]; // Bruno Berselli, Apr 09 2013
  • Mathematica
    Select[Select[Prime[Range[280]], PrimeQ[Plus@@IntegerDigits[ # ]]&], PrimeQ[Times@@IntegerDigits[ # ]+1]&] (from Harvey Dale)

Formula

A066725 INTERSECT A046704. - R. J. Mathar, Aug 26 2007

Extensions

Edited and extended by Robert G. Wilson v, Sep 07 2003
Showing 1-2 of 2 results.