cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066726 Numbers n such that binomial(2n, n) - 1 is prime.

Original entry on oeis.org

2, 3, 5, 9, 15, 29, 43, 51, 113, 184, 213, 222, 267, 279, 369, 402, 441, 603, 812, 839, 902, 1422, 1542, 1824, 2983, 3065, 3911, 3958, 4192, 4587, 4865, 5543, 5837, 7902, 9299, 9722, 10412, 10648, 11498, 12803, 14428, 15876, 20173, 26311, 38927, 52210, 54189, 59757, 60454, 72094, 76899, 85033, 91059, 91059
Offset: 1

Views

Author

Robert G. Wilson v, Jan 15 2002

Keywords

Comments

I.e., numbers n such that (2*n)!/(n!)^2-1 is prime. - Hugo Pfoertner, Sep 25 2005
The next term is > 30000. - Vaclav Kotesovec, May 03 2021
a(55) > 100000. - Robert Price, Jul 02 2024

Crossrefs

Cf. A092751 = primes of the form (2*n)!/(n!)^2-1, A112853 = (2*n)!/n!-1 is prime, A112855 = (2*n)!/n!+1 is prime, A066699 = (2*n)!/(n!)^2+1 is prime, A112861 = (2*n)!/(2*(n!)^2)-1 is prime, A112863 = (2*n)!/(2*(n!)^2)+1 is prime. - Hugo Pfoertner, Sep 25 2005

Programs

  • Mathematica
    Do[ If[ PrimeQ[ Binomial[2n, n] - 1], Print[n]], {n, 1, 2000} ]
  • PARI
    is(n)=isprime(binomial(2*n,n)-1) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from Ed Pegg Jr, Sep 10 2003
Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar
a(43)-a(44) from Vaclav Kotesovec, May 03 2021
a(45)-a(54) from Robert Price, Jul 02 2024