A066734 Numbers such that the nonzero product of the digits of its 4th power is also a 4th power.
1, 118, 144, 211, 427, 739, 1836, 8958, 19638, 20528, 21454, 22359, 24533, 26022, 27378, 29648, 33038, 33204, 33648, 40226, 40262, 46416, 47181, 47198, 49314, 53133, 55273, 55792, 59559, 59754, 60924, 61292, 61763, 61933, 66408, 68302
Offset: 1
Examples
118 is in the sequence because the 4th power of 118 is 193877776 and 1*9*3*8*7*7*7*7*6 = 3111696 = 42^4.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A067071.
Programs
-
Mathematica
Do[a = Apply[Times, IntegerDigits[n^2]]; If[ a != 0 && IntegerQ[a^(1/2)], Print[n]], {n, 1, 10^4} ] d4pQ[n_]:=Module[{t=Times@@IntegerDigits[n^4]},t!=0&&IntegerQ[Surd[t,4]]]; Select[Range[70000],d4pQ] (* Harvey P. Dale, Feb 20 2018 *)
-
PARI
isok(k)={my(p=vecprod(digits(k^4))); p && ispower(p, 4)} \\ Harry J. Smith, Mar 20 2010