A066805 a(n) is the least k such that n + Sum_{i=1..k} A018252(i) is prime; or 0 if none exists.
1, 1, 5, 1, 6, 1, 8, 2, 5, 1, 7, 1, 5, 2, 5, 1, 7, 1, 5, 3, 6, 1, 6, 2, 5, 2, 13, 1, 6, 1, 5, 2, 5, 4, 6, 1, 8, 2, 5, 1, 6, 1, 5, 10, 5, 1, 7, 2, 8, 3, 5, 1, 7, 2, 5, 2, 7, 1, 6, 1, 5, 2, 6, 4, 6, 1, 8, 2, 5, 1, 6, 1, 5, 2, 5, 27, 7, 1, 5, 11, 5, 1, 15, 2, 5
Offset: 1
Keywords
Examples
3 + (1 + 4 + 6 + 8 + 9) = 31, a prime and 5 consecutive nonprime numbers starting with 1 are required to achieve this. Hence a(3) = 5.
Programs
-
PARI
a(n) = my(c=0, s=n); for(k=1, oo, until(!isprime(c), c++); if(isprime(s+=c), return(k))); \\ Jinyuan Wang, Jul 30 2020
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 12 2002
Comments