cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066769 a(n) = Sum_{d|n} d*Fibonacci(n/d).

Original entry on oeis.org

1, 3, 5, 9, 10, 21, 20, 39, 49, 80, 100, 195, 246, 424, 650, 1065, 1614, 2715, 4200, 6940, 11020, 17922, 28680, 46821, 75075, 121898, 196565, 318680, 514258, 833560, 1346300, 2180439, 3524900, 5706132, 9227600, 14936241, 24157854, 39096588
Offset: 1

Views

Author

Vladeta Jovovic, Jan 17 2002

Keywords

Comments

Dirichlet convolution of f(n)=n with the Fibonacci numbers F(n)=A000045. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.

Crossrefs

Programs

  • Maple
    N:= 100:
    A:= Vector(N):
    for k from 1 to N do
      f:= combinat:-fibonacci(k);
      ds:= [$1..floor(N/k)];
      A[k*ds] := A[k*ds] + f*Vector(ds);
    od:
    convert(A,list); # Robert Israel, Feb 08 2016
  • Mathematica
    a[n_] := DivisorSum[n, # * Fibonacci[n/#] &]; Array[a, 38] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*fibonacci(n/d)); \\ Michel Marcus, Sep 16 2020

Formula

G.f.: Sum_{i>0} i*x^i/(1-x^i-x^(2*i)). - Vladeta Jovovic, Oct 06 2003