A066818 a(n) is the least k such that n + Sum_{i=1..k} A005384(i) is prime; or 0 if none exists.
1, 2, 1, 12, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 4, 1, 4, 5, 2, 7, 2, 1, 6, 1, 6, 3, 2, 3, 6, 1, 2, 3, 2, 1, 4, 1, 2, 3, 8, 1, 4, 11, 2, 3, 4, 1, 4, 5, 2, 13, 2, 1, 4, 1, 8, 3, 2, 3, 6, 1, 2, 7, 2, 1, 10, 1, 8, 3, 2, 15, 4, 1, 2, 3, 4, 1, 4, 5, 2, 7, 4
Offset: 1
Keywords
Examples
7 + (2 + 3 + 5) = 17, a prime and three consecutive Sophie Germain primes starting from 2, the first Sophie Germain prime, are needed to achieve this. So a(7) = 3.
Programs
-
PARI
a(n) = my(p=0, s=n); for(k=1, oo, until(isprime(2*p+1), p=nextprime(p+1)); if(isprime(s+=p), return(k))); \\ Jinyuan Wang, Jul 30 2020
Extensions
a(53) corrected by and more terms from Jinyuan Wang, Jul 30 2020
Comments