A066838 Product of primes < n that do not divide n.
1, 1, 2, 3, 6, 5, 30, 105, 70, 21, 210, 385, 2310, 2145, 2002, 15015, 30030, 85085, 510510, 969969, 461890, 440895, 9699690, 37182145, 44618574, 8580495, 74364290, 15935205, 223092870, 215656441, 6469693230, 100280245065
Offset: 1
Keywords
Examples
a(8) = 105 = 3 * 5 * 7 because 3, 5 and 7 are the primes < 8 that do not divide 8.
Links
- Robert Israel, Table of n, a(n) for n = 1..2350
Crossrefs
Cf. A002110 (primorial numbers).
Programs
-
Maple
Primes:= select(isprime, [$2..100]): seq(convert(select(t -> t <= n and n mod t <> 0, Primes),`*`), n=1..100); # Robert Israel, Jun 19 2016
-
Mathematica
Table[Apply[Times, Select[Prime@ Range@ PrimePi@ n, CoprimeQ[#, n] &] /. {} -> 1], {n, 32}] (* or *) Table[E^Sum[(1 - Floor[n/k] + Floor[(n - 1)/k]) Boole@ PrimeQ[k] MangoldtLambda@ k, {k, 2, n}], {n, 32}] (* Michael De Vlieger, Jun 22 2016 *) Table[Times@@Complement[Prime[Range[PrimePi[n]]],FactorInteger[n][[All,1]]],{n,40}] (* Harvey P. Dale, Feb 05 2022 *)
-
PARI
a(n) = prod(i=1, n-1, if (isprime(i) && (n%i) , i, 1)); \\ Michel Marcus, May 20 2014
Formula
a(prime(n)) = A002110(n-1). - Michel Marcus, May 20 2014
a(n) = e^[Sum_{k=2..n} (1-floor(n/k)+floor((n-1)/k))*A010051(k)*M(k)] where M(n) is the Mangoldt function. - Anthony Browne, Jun 17 2016