cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A218346 Numbers of the form a^a + b^b, with a > b > 0.

Original entry on oeis.org

5, 28, 31, 257, 260, 283, 3126, 3129, 3152, 3381, 46657, 46660, 46683, 46912, 49781, 823544, 823547, 823570, 823799, 826668, 870199, 16777217, 16777220, 16777243, 16777472, 16780341, 16823872, 17600759, 387420490, 387420493, 387420516, 387420745, 387423614, 387467145
Offset: 1

Views

Author

Alex Ratushnyak, Oct 26 2012

Keywords

Comments

Subsequence of A066846.

Examples

			a(1) = 2^2 + 1^1 = 5,
a(2) = 3^3 + 1^1 = 28,
a(3) = 2^2 + 3^3 = 31.
		

Crossrefs

Cf. A068145: primes of the form a^a + b^b.

Programs

  • Maple
    N:= 10^12: # for terms <= N
    S:= NULL:
    for m from 1 do v:= m^m; if v > N then break fi; S:= S,v od:
    sort(convert(select(`<=`,{seq(seq(S[i]+S[j],j=i+1..m-1),i=1..m-1)},N),list)); # Robert Israel, Aug 10 2020
  • Mathematica
    nn = 10; Select[Union[Flatten[Table[a^a + b^b, {a, nn}, {b, a + 1, nn}]]], # <= nn^nn + 1 &] (* T. D. Noe, Nov 15 2012 *)
  • Python
    from itertools import count, takewhile
    def aupto(lim):
      pows = list(takewhile(lambda x: x < lim, (i**i for i in count(1))))
      sums = (aa+bb for i, bb in enumerate(pows) for aa in pows[i+1:])
      return sorted(set(s for s in sums if s <= lim))
    print(aupto(387467145))  # Michael S. Branicky, May 28 2021

A218347 Numbers of the form a^a + b^b, a>=b>=0.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 27, 28, 31, 54, 256, 257, 260, 283, 512, 3125, 3126, 3129, 3152, 3381, 6250, 46656, 46657, 46660, 46683, 46912, 49781, 93312, 823543, 823544, 823547, 823570, 823799, 826668, 870199, 1647086, 16777216, 16777217, 16777220, 16777243, 16777472, 16780341
Offset: 1

Views

Author

Alex Ratushnyak, Oct 26 2012

Keywords

Comments

The subsequence of primes is A068145.

Crossrefs

A124076 Numbers of the form Abs[m^m - n^n], where integers m,n>0.

Original entry on oeis.org

0, 3, 23, 26, 229, 252, 255, 2869, 3098, 3121, 3124, 43531, 46400, 46629, 46652, 46655, 776887, 820418, 823287, 823516, 823539, 823542, 15953673, 16730560, 16774091, 16776960, 16777189, 16777212, 16777215, 370643273, 386596946
Offset: 1

Views

Author

Alexander Adamchuk, Nov 24 2006

Keywords

Comments

Prime a(n) are listed in A068146(n) = {3, 23, 229, 3121, 776887, 16774091, 275311670611, ...}.

Crossrefs

Cf. A066846 = Integers of the form m^m + n^n, m and n = positive integers. Cf. A068146 = Primes of the form a^a - b^b.

Programs

  • Mathematica
    Take[Intersection[Flatten[Table[Abs[x^x-y^y], {x, 1, 12}, {y, 1, 12}]]], 50]
Showing 1-3 of 3 results.