cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066882 Number of partitions of n into prime divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 4, 1, 3, 2, 2, 1, 5, 1, 2, 1, 3, 1, 21, 1, 1, 2, 2, 2, 7, 1, 2, 2, 5, 1, 28, 1, 3, 4, 2, 1, 9, 1, 6, 2, 3, 1, 10, 2, 5, 2, 2, 1, 71, 1, 2, 4, 1, 2, 42, 1, 3, 2, 43, 1, 13, 1, 2, 6, 3, 2, 49, 1, 9, 1, 2, 1, 97, 2, 2, 2, 5, 1, 151, 2, 3, 2, 2, 2, 17, 1, 8
Offset: 0

Views

Author

Naohiro Nomoto, Jan 26 2002

Keywords

Crossrefs

Main diagonal of A107329 (for n>=1).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([factorset(n)[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    a[0] = 1; a[n_] := SeriesCoefficient[1/Product[1-x^d, {d, FactorInteger[n][[All, 1]]}], {x, 0, n}]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2015, after Vladeta Jovovic *)
  • Python
    from sympy import factorint
    from functools import cache
    def A066882(n):
        @cache
        def b(m, i):
            if m == 0: return 1
            if i < 0: return 0
            return b(m, i-1) + (0 if l[i]>m else b(m-l[i], i))
        l = sorted(factorint(n))
        return b(n, len(l)-1)
    print([A066882(n) for n in range(99)]) # Michael S. Branicky, Jan 08 2025 after Alois P. Heinz

Formula

Coefficient of x^n in expansion of 1/Product_{d is prime divisor of n} (1-x^d). - Vladeta Jovovic, Apr 11 2004

Extensions

More terms from Sascha Kurz, Mar 23 2002
Corrected by Vladeta Jovovic, Apr 11 2004