A066890 Cubes that are the sum of three distinct positive cubes.
216, 729, 1728, 5832, 6859, 8000, 13824, 15625, 19683, 21952, 24389, 27000, 46656, 54872, 64000, 68921, 74088, 85184, 91125, 97336, 110592, 125000, 148877, 157464, 175616, 185193, 195112, 216000, 250047, 287496, 300763, 328509, 343000, 357911, 373248, 421875
Offset: 1
Keywords
Examples
729 is included because it is 9^3 and 1^3 + 6^3 + 8^3 = 729.
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), pp. 130, 147.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
maxCube = (m = 67)^3; Reap[ Do[ bmax = (maxCube - a^3)^(1/3) // Ceiling; Do[ cmax = (maxCube - b^3)^(1/3) // Ceiling; Do[ n = a^3 + b^3 + c^3; If[n <= maxCube, If[ IntegerQ[n^(1/3)], Sow[n]]], {c, b, cmax}], {b, a, bmax}], {a, 1, (maxCube - 2)^(1/3) // Ceiling}]][[2, 1]] // Flatten // Union (* Jean-François Alcover, Mar 07 2013 *)
Formula
a(n) = (A023042(n))^3. - Christian N. K. Anderson, Aug 10 2014
Extensions
Offset corrected by Arkadiusz Wesolowski, Aug 06 2012