cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174538 The smallest k such that the number of steps in the n Collatz sequences starting at k+i, i=0..n-1, is always prime.

Original entry on oeis.org

3, 3, 3, 60, 246, 560, 560, 560, 4722, 4722, 6032, 6666, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 13956, 81488, 81488, 81488, 83840, 89535, 89535, 89535, 282880, 282984, 282984, 282984, 282984
Offset: 1

Views

Author

Michel Lagneau, Mar 21 2010

Keywords

Comments

Indices of A006577 that start a run of at least n primes.
We find long sequences of primes, for example there are 55 primes starting at index 282984, namely 83, 101, 127, 251,...

Examples

			A006577(3)=7, A006577(4)=2 and A006577(5)=5 are all prime, so a(1)=a(2)=a(3) =3 mark the start of that run.
		

Crossrefs

Programs

  • Maple
    A174538 := proc(n)
            local k,allp;
            for k from 1 do
                    allp := true;
                    for i from 0 to n-1 do
                            if not isprime(A006577(k+i)) then
                                    allp := false;
                                    break;
                            end if;
                    end do:
                    if allp then
                            return k;
                    end if;
            end do:
    end proc: # R. J. Mathar, Jul 08 2012

Extensions

Edited by R. J. Mathar, Jul 08 2012

A174550 Run lengths of 2 or larger for consecutive prime numbers in A006577.

Original entry on oeis.org

3, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 2, 3, 3, 4, 2, 5, 4, 3, 2, 3, 4, 2, 2, 2, 2, 3, 3, 2, 5, 2, 2, 3, 2, 3, 2, 2, 3, 8, 2, 4, 2, 2, 2, 2, 2, 3, 3, 3, 6, 3, 4, 2, 2, 3, 3, 2, 2, 4, 2, 2, 3, 6, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 5, 3, 2, 4, 3, 5, 3, 3, 2, 8, 2, 2, 2, 2, 3, 8, 4, 3, 3, 3, 4, 2, 3, 8, 2, 3, 3, 5, 3
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2010

Keywords

Comments

This sequence is given only for n <=5000 with max(s(n)) = 10. But we can find long sequences of primes, for example,length(s(12956))= 55, and corresponding to A006577(282984 + k), k = 0,1,...,54. We obtain a sequence of 55 consecutive prime numbers given in the example below.

Examples

			a(1) = 3 represents the run (7, 2, 5).
a(2) = 2 represents the run (3, 19).
a(3) = 2 represents the run (17, 17).
a(7) = 4 represents the run (19, 19, 107, 107).
a(12956) = 55 represents the run (83, 251, 83, 251, 127, 127, 127, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 83, 83, 83, 83, 83, 83, 101, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 251, 251, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83)
		

Crossrefs

Programs

  • Maple
     nn:=2000:T:=array(1..nn):for n from 1 to nn do: m:=n:for p from 0 to 1000 while (m<>1) do: if irem(m,2)=1 then m:=3*m+1:else m:=m/2:fi:od:T[n]:=p:od:ii:=1:for i from 1 to nn do:if type(T[i],prime)=true and type(T[i+1],prime)=true then ii:=ii+1:else if ii<>1 then printf(`%d, `, ii):ii:=1:else fi:fi:od:
Showing 1-2 of 2 results.