A066913 (sum of primes < n that do not divide n) (mod n).
0, 0, 2, 3, 0, 5, 3, 7, 5, 0, 6, 11, 2, 4, 3, 7, 7, 17, 1, 10, 4, 20, 8, 23, 20, 7, 16, 7, 13, 29, 5, 30, 14, 5, 8, 11, 12, 24, 25, 30, 33, 16, 23, 4, 3, 26, 46, 35, 27, 21, 2, 1, 10, 52, 35, 36, 17, 2, 27, 10, 13, 34, 50, 51, 28, 23, 32, 5, 59, 64, 0, 58, 55, 7, 29, 7, 1, 70, 1
Offset: 1
Keywords
Examples
a(8) = (3 + 5 + 7) (mod 8) = 7 because 3, 5 and 7 are the primes < 8 that do not divide 8.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[Mod[Total[Select[Prime[Range[PrimePi[n]]],Mod[n,#]!=0&]],n],{n,80}] (* Harvey P. Dale, Aug 06 2019 *)
-
PARI
a(n) = sum(i=1, n-1, if (isprime(i) && (n%i), i)) % n; \\ Michel Marcus, May 20 2014
Formula
a(n) = A066911(n) modulo n. - Michel Marcus, May 20 2014
a(prime(n)) = A071089(n). - Michel Marcus, May 20 2014