cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067001 Triangle T(n,k) = d(n-k,n), 0 <= k <= n, where d(l,m) = Sum_{k=l..m} 2^k * binomial(2*m-2*k, m-k) * binomial(m+k, m) * binomial(k, l).

Original entry on oeis.org

1, 4, 6, 24, 60, 42, 160, 560, 688, 308, 1120, 5040, 8760, 7080, 2310, 8064, 44352, 99456, 114576, 68712, 17556, 59136, 384384, 1055040, 1572480, 1351840, 642824, 134596, 439296, 3294720, 10695168, 19536000, 21778560, 14912064, 5864640, 1038312
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2002

Keywords

Comments

For an explanation on how this triangular array is related to the Boros-Moll polynomial P_n(x) and the theory in Comtet (1967), see my comments in A223549. For example, the bivariate o.g.f. below follows from the theory in Comtet (1967). - Petros Hadjicostas, May 24 2020

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) starts:
     1;
     4,    6;
    24,   60,   42;
   160,  560,  688,  308;
  1120, 5040, 8760, 7080, 2310;
  ...
		

Crossrefs

Column k=0 gives A059304.
Row sums give A002458.
Main diagonal gives A004982.

Programs

  • Maple
    d := proc(l,m) local k; add(2^k*binomial(2*m-2*k,m-k)*binomial(m+k,m)*binomial(k,l),k=l..m); end:
    T:= (n, k)-> d(n-k, n):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_, k_] := SeriesCoefficient[Sqrt[(1+y)/(1 - 8x (1+y))/(1 + y Sqrt[1 - 8x (1+y)])], {x, 0, n}, {y, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 05 2020 *)
  • PARI
    d(l, m) = sum(kk=l, m, 2^kk*binomial(2*m-2*kk,m-kk)*binomial(m+kk,m)*binomial(kk,l));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(d(n-k, n), ", ");); print(););} \\ Michel Marcus, Jul 18 2015

Formula

From Petros Hadjicostas, May 24 2020: (Start)
T(n,k) = 2^(2*n)*A223549(n,n-k)/A223550(n,n-k).
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = sqrt((1 + y)/(1 - 8*x*(1 + y))/(1 + y*sqrt(1 - 8*x*(1 + y)))). (End)