cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067005 Totient of A061026(n) divided by n.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 2, 2, 1, 6, 1, 10, 1, 2, 1, 2, 1, 4, 2, 2, 1, 2, 1, 10, 1, 2, 3, 2, 1, 4, 5, 2, 1, 2, 1, 4, 1, 4, 1, 6, 1, 4, 2, 2, 1, 2, 1, 2, 1, 4, 1, 12, 1, 6, 5, 2, 1, 2, 1, 4, 2, 2, 1, 8, 1, 4, 2, 2, 3, 6, 1, 4, 1, 2, 1, 2, 1, 12, 2, 4, 1, 2, 2, 6, 1, 4, 3, 2, 1, 4, 2, 2, 1
Offset: 1

Views

Author

Labos Elemer, Dec 22 2001

Keywords

Examples

			n = 24: a(24) = 1 = phi(A061026(24))/24 = phi(35)/24 = 24/24;
n = 85: a(85) = 12 = phi(A061026(85))/85 = 1020/85.
		

Crossrefs

Programs

  • Mathematica
    Table[m = 1; While[! Divisible[Set[k, EulerPhi@ m], n], m++]; k/n, {n, 100}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    for(n=1,100, s=1; while((e=eulerphi(s))%n>0, s++); print1(e/n ", ")); \\ Zak Seidov, Feb 22 2014
    
  • PARI
    list(len) = {my(v = vector(len), c = 0, k = 1, e); while(c < len, e = eulerphi(k); fordiv(e, d, if(d <= len && v[d] == 0, v[d] = e/d; c++)); k++); v; } \\ Amiram Eldar, Mar 08 2025
    
  • Python
    from sympy.ntheory import totient
    def k(n):
        m=1
        while totient(m)%n: m+=1
        return m
    print([totient(k(n))//n for n in range(1, 101)]) # Indranil Ghosh, Mar 18 2017

Formula

a(n) = A000010(A061026(n))/n.
a(n) = A066678(n)/n. - Amiram Eldar, Mar 08 2025