cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067048 a(n) = lcm(n, n+1, n+2, n+3, n+4) / 60.

Original entry on oeis.org

1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428, 3876, 3876, 6783, 4389, 33649, 3542, 17710, 32890, 26910, 8190, 118755, 23751, 56637, 50344, 79112, 46376, 324632, 31416, 145299, 250971, 191919, 54834, 749398, 141778, 320866, 271502, 407253
Offset: 1

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			a(6) = 42 as lcm(6,7,8,9,10)/60 = 2520/60 = 42.
		

Crossrefs

Programs

  • Maple
    seq(ilcm(n,n+1,n+2,n+3,n+4)/60,n=1..100); # Robert Israel, Feb 07 2016
  • Mathematica
    Table[LCM @@ Range[n, n + 4]/60, {n, 1, 50}] (* Amiram Eldar, Sep 29 2022 *)
  • PARI
    a(n)={lcm([n, n+1, n+2, n+3, n+4])/60} \\ Harry J. Smith, May 01 2010

Formula

From Gary Detlefs Apr 14 2011 and Apr 18 2011: (Start)
a(n) = (n+4)!*gcd(n-1,3)/(360*(n-1)!*gcd(n,4))
a(n) = (n+4)!*(5-4*cos((2*n+1)*Pi/3))/(1080*(n-1)!*(2+(-1)^n+cos(n*Pi/2)))
a(n) = (n+4)!*gcd(n-1,6)/(180*(n-1)!*2^((2*cos(n*Pi/2)+9+(-1)^n)/4)), n>1. (End)
120 <= n*(n+1)*(n+2)*(n+3)*(n+4)/a(n) <= 1440. - Charles R Greathouse IV, Sep 19 2012
Sum_{n>=1} 1/a(n) = 80 - 40*log(sqrt(3)+2)/sqrt(3) - 490*log(2)/3 + 60*log(3). - Amiram Eldar, Sep 29 2022