cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A061297 a(n) = Sum_{ r = 0 to n} L(n,r), where L(n,r) (A067049) = lcm(n, n-1, n-2, ..., n-r+1)/lcm(1, 2, 3, ..., r).

Original entry on oeis.org

1, 2, 4, 8, 14, 32, 39, 114, 166, 266, 421, 1608, 1005, 3980, 6894, 4206, 8666, 40904, 49559, 315478, 162321, 79180, 269878, 1647124, 937553, 1810092, 8445654, 7791356, 3978238, 33071544, 19578861, 283536170, 327438714, 117635956, 742042967, 154748984, 88779589, 1532487536, 10514107742, 3761632498
Offset: 0

Views

Author

Amarnath Murthy, Apr 26 2001

Keywords

Comments

The following sequences all appear to have the same parity: A003071, A029886, A061297, A092524, A093431, A102393, A104258, A122248, A128975. - Jeremy Gardiner, Dec 28 2008

Examples

			a(0) = 1, a(4) = 14: we have L(4,0) = 1, L(4,1) = 4, L(4,2) = 6, L(4,3) = 2, L(4,4) = 1. For r = 0 to 4, sigma {L(4,r)}= 1 + 4 + 6 + 2 + 1 = 14.
		

References

  • Amarnath Murthy, Some Notions On Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

Crossrefs

Row sums of A067049.

Programs

  • PARI
    tlcm(n, r) = {nt = 1; for (k = n-r+1, n, nt = lcm(nt, k);); dt = 1; for (k = 1, r, dt = lcm(dt, k);); return (nt/dt);}
    a(n) = sum(r = 0, n , tlcm(n, r)); \\ Michel Marcus, Sep 14 2013

A093430 Triangle read by rows: T(n,k) = lcm(n, n-1, ..., n-k+2, n-k+1)/lcm(1, 2, ..., k) (1 <= k <= n).

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 6, 2, 1, 5, 10, 10, 5, 1, 6, 15, 10, 5, 1, 1, 7, 21, 35, 35, 7, 7, 1, 8, 28, 28, 70, 14, 14, 2, 1, 9, 36, 84, 42, 42, 42, 6, 3, 1, 10, 45, 60, 210, 42, 42, 6, 3, 1, 1, 11, 55, 165, 330, 462, 462, 66, 33, 11, 11, 1, 12, 66, 110, 165, 66, 462, 66, 33, 11, 11, 1, 1, 13
Offset: 1

Views

Author

Amarnath Murthy, Mar 31 2004

Keywords

Comments

An LCM-analog of the binomial coefficients. - N. J. A. Sloane, Aug 26 2015

Examples

			T(7,3) = lcm(7,6,5)/lcm(1,2,3) = 210/6 = 35.
Triangle starts:
  1;
  2,  1;
  3,  3,  1;
  4,  6,  2,  1;
  5, 10, 10,  5,  1;
  6, 15, 10,  5,  1,  1;
  ...
		

Crossrefs

Cf. A067049 (same triangle with an additional leading column of ones).
Row sums yield A093431.

Programs

Extensions

More terms from Emeric Deutsch, Jan 30 2006

A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1

Views

Author

Jean-François Alcover, Apr 18 2014

Keywords

Comments

About the "root estimation" question asked in MathOverflow, one can check (at least numerically) that, for instance with k = 4 and a = 1/11, the series a^-1 + (k - 1) + Sum_{n>=} (-1)^n*binomial(n*k, n+1)/n*a^n evaluates to the positive solution of x^k = (x+1)^(k-1).
Row 1 is A000217 (triangular numbers),
Row 2 is A006331 (twice the square pyramidal numbers),
Row 3 is A067047(3n) = lcm(3n, 3n+1, 3n+2, 3n+3)/12 (from column r=4 of A067049),
Row 4 is A222715(2n) = (n-1)*n*(2n-1)*(4n-3)*(4n-1)/15,
Row 5 is not in the OEIS.
Column 1 is A000108 (Catalan numbers),
Column 2 is A007226 left shifted 1 place,
Column 4 is A007228 left shifted 1 place,
Column 5 is A124724 left shifted 1 place,
Column 6 is not in the OEIS.

Examples

			Array begins:
    1,    3,     6,     10,      15,      21, ...
    2,   10,    28,     60,     110,     182, ...
    5,   42,   165,    455,    1020,    1995, ...
   14,  198,  1092,   3876,   10626,   24570, ...
   42, 1001,  7752,  35420,  118755,  324632, ...
  132, 5304, 57684, 339300, 1391280, 4496388, ...
  etc.
		

References

  • N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten

A241475 Triangle t(n,r) = s(n,r)*s(n,r+1), where s(n,r) = lcm(n,n-1,...,n-r+1)/lcm(1,2,...,r-1,r), n >= 1 and 0 <= r < n.

Original entry on oeis.org

1, 2, 2, 3, 9, 3, 4, 24, 12, 2, 5, 50, 100, 50, 5, 6, 90, 150, 50, 5, 1, 7, 147, 735, 1225, 245, 49, 7, 8, 224, 784, 1960, 980, 196, 28, 2, 9, 324, 3024, 3528, 1764, 1764, 252, 18, 3, 10, 450, 2700, 12600, 8820, 1764, 252, 18, 3, 1, 11, 605, 9075, 54450, 152460, 213444, 30492, 2178, 363, 121, 11
Offset: 1

Views

Author

Jean-François Alcover, Apr 23 2014

Keywords

Comments

The first eight terms and the first two terms of every row are identical to those of A132812.

Examples

			Triangle begins:
  1;
  2,  2;
  3,  9,   3;
  4, 24,  12,  2;
  5, 50, 100, 50, 5;
  6, 90, 150, 50, 5, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    s[, 0] = 1; s[n, r_?NumericQ] := LCM @@ Table[n-k+1, {k, 1, r}] / LCM @@ Table[k, {k, 1, r}]; t[n_, r_] := s[n, r]*s[n, r+1]; Table[t[n, r] , {n, 1, 12}, {r, 0, n-1}] // Flatten
Showing 1-4 of 4 results.