A003071 Sorting numbers: maximal number of comparisons for sorting n elements by list merging.
0, 1, 3, 5, 9, 11, 14, 17, 25, 27, 30, 33, 38, 41, 45, 49, 65, 67, 70, 73, 78, 81, 85, 89, 98, 101, 105, 109, 115, 119, 124, 129, 161, 163, 166, 169, 174, 177, 181, 185, 194, 197, 201, 205, 211, 215, 220, 225, 242, 245, 249, 253, 259, 263, 268, 273, 283, 287, 292, 297, 304
Offset: 1
References
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sections 5.2.4 and 5.3.1.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, Theoretical Computer Sci., 98 (1992), 163-197.
- An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Terrillon Jean-Christophe, Hiroyuki Iida, Reaper Tournament System, 2018.
- An Vinh Nguyen Dinh, Nhien Pham Hoang Bao, Mohd Nor Akmal Khalid, Hiroyuki Iida, Simulating competitiveness and precision in a tournament structure: a reaper tournament system, Int'l J. of Information Technology (2020) Vol. 12, 1-18.
- Tanya Khovanova, There are no coincidences, arXiv preprint 1410.2193 [math.CO], 2014.
- Index entries for sequences related to sorting
Programs
-
Haskell
a003071 n = 1 - 2 ^ last es + sum (zipWith (*) (zipWith (+) es [0..]) (map (2 ^) es)) where es = reverse $ a133457_row n -- Reinhard Zumkeller, Oct 28 2013
-
Mathematica
a[1] = 0; a[n_] := a[n] = a[n-1] + 2^IntegerExponent[n-1, 2] + DigitCount[n-1, 2, 1] - 1; Table[a[n], {n, 1, 61}] (* Jean-François Alcover, Feb 10 2012, after Henry Bottomley *)
Formula
Let n = 2^e_1 + 2^e_2 + ... + 2^e_t, e_1 > e_2 > ... > e_t >= 0, t >= 1. Then a(n) = 1 - 2^e_t + Sum_{k=1..t} (e_k + k - 1)*2^e_k [Knuth, Problem 14, Section 5.2.4].
a(n) = a(n-1) + A061338(n) = a(n-1) + A006519(n) + A000120(n) - 1 = n + A000337(A000523(n)) + a(n - 2^A000523(n)). a(2^k) = k*2^k + 1 = A002064(k). - Henry Bottomley, Apr 27 2001
G.f.: x/(1-x)^3 + 1/(1-x)^2*Sum(k>=1, (-1+(1-x)*2^(k-1))*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003
Extensions
More terms from David W. Wilson
Comments