A067063 Smallest prime factor of repunit(n) = (10^n-1)/9 (A002275).
11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239
Offset: 2
Keywords
References
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers.
Links
- Ray Chandler, Table of n, a(n) for n = 2..508 (first 499 terms from T. D. Noe - corrected 7 terms)
- Makoto Kamada, Factorizations of 11...11 (Repunit).
- Yousuke Koide, Factorizations of Repunit Numbers
- Amarnath Murthy, On the divisors of Smarandache Unary Sequence, Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000, page 184.
- Samuel S. Wagstaff, the Cunningham Project
Programs
-
Maple
'min(op(numtheory[factorset]((10^k-1)/9)))'$k=2..50; # M. F. Hasler, Nov 21 2006
-
Mathematica
a = {}; Do[a = Append[a, FactorInteger[(10^n - 1)/9][[1, 1]]], {n, 2, 111} ]; a Table[FactorInteger[FromDigits[PadRight[{},n,1]]][[1,1]],{n,2,50}] (* Harvey P. Dale, Dec 10 2013 *)
Formula
a(3n) = 3, a(6n-4) = a(6n-2) = 11, a(30n-25) = a(30n-5) = 41, ... - M. F. Hasler, Nov 21 2006
Extensions
More terms from Robert G. Wilson v, Jan 04 2002
Comments