A067251 Numbers with no trailing zeros in decimal representation.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for 10-automatic sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Haskell
a067251 n = a067251_list !! (n-1) a067251_list = filter ((> 0) . flip mod 10) [0..] -- Reinhard Zumkeller, Jul 11 2015, Dec 29 2011
-
Maple
S := seq(n + floor((n-1)/9), n=1..100); # Bernard Schott, Oct 04 2021
-
Mathematica
DeleteCases[Range[110],?(Divisible[#,10]&)] (* _Harvey P. Dale, May 16 2016 *)
-
PARI
f(n) = for(x=1,n,if(x%10,print1(x","))) \\ Cino Hilliard, Feb 21 2005
-
PARI
Vec(x*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)/((x-1)^2*(x^2+x+1)*(x^6+x^3+1)) + O(x^100)) \\ Colin Barker, Sep 28 2015
-
Python
def a(n): return n + (n-1)//9 print([a(n) for n in range(1, 95)]) # Michael S. Branicky, Oct 04 2021
Formula
a(n) = n + floor((n-1)/9).
a(n) mod 10 > 0 for all n.
A168184(a(n)) = 1. - Reinhard Zumkeller, Nov 30 2009
From Colin Barker, Sep 28 2015: (Start)
a(n) = a(n-1) + a(n-9) - a(n-10) for n>10.
G.f.: x*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (1/20 + 1/sqrt(5) - sqrt(1+2/sqrt(5))/5) * Pi. - Amiram Eldar, May 11 2025
Extensions
Edited by N. J. A. Sloane, Sep 06 2008 at the suggestion of R. J. Mathar
Typos corrected in a comment line by Reinhard Zumkeller, Apr 04 2010
Comments