cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A317905 Convergence speed of m^^m, where m = A067251(n) and n >= 2. a(n) = f(m, m) - f(m, m - 1), where f(x, y) corresponds to the maximum value of k, such that x^^y == x^^(y + 1) (mod 10^k).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 6, 1, 1, 3, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 5, 1, 1
Offset: 2

Views

Author

Marco Ripà, Aug 10 2018

Keywords

Comments

It is possible to anticipate the convergence speed of m^^m, where ^^ indicates tetration or hyper-4 (e.g., 3^^4 = 3^(3^(3^3))), simply looking at the congruence (mod 25) of m. In fact, assuming m > 2, a(n) = 1 for any m == 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23 (mod 25), and a(n) >= 2 otherwise.
It follows that 32/45 = 71.11% of the a(n) assume unitary value.
You can also obtain an arbitrary high convergence speed, such as taking the beautiful base b = 999...99 (9_9_9... n times), which gives a(n) = len(b), for any len(b) > 1. Thus, 99...9^^m == 99...9^^(m + 1) (mod m*10^len(b)), as proved by Ripà in "La strana coda della serie n^n^...^n", pages 25-26. In fact, m = 99...9 == 24 (mod 25) and a(m=24) > 1.
From Marco Ripà, Dec 19 2021: (Start)
Knowing the "constant congruence speed" of a given base (a.k.a. the convergence speed of the base m, assuming m > 2) is very useful in order to calculate the exact number of stable digits of all its tetrations of height b > 1. As an example, let us consider all the a(n) such that n is congruent to 4 (mod 9) (i.e., all the tetration bases belonging to the congruence class 5 (mod 10)). Then, the exact number of stable digits (#S(m, b)) of any tetration m^^b (i.e., the number of its last "frozen" digits) such that m is congruent to 5 (mod 10), for any b >= 3, can automatically be calculated by simply knowing that (under the stated constraint) the congruence speed of the m corresponds to the 2-adic valuation of (m^2 - 1) minus 1. Thus, let k = 1, 2, 3, ..., and we have that
If m = 20*k - 5, then #S(m, b > 2) = b*(v_2(m^2 - 1) - 1) + 1 = b*(v_2(m + 1) + 1);
If m = 20*k + 5, then #S(m, b > 2) = (b + 1)*(v_2(m^2 - 1) - 1) = (b + 1)*(v_2(m - 1));
If m = 5, then #S(m, 1) = 1, #S(m, 2) = 4, #S(m, b > 2) = 8 + 2*(b - 3).
(End)
For any n > 2, the value of a(n) depends on the congruence modulo 18 of n, since the constant congruence speed of m arises from the 14 nontrivial solutions of the fundamental equation y^5 = y in the (commutative) ring of decadic integers (e.g., y = -1 = ...9999 is a solution of y^5 = y, so it originates the law a(n) = min(v_2(m + 1), v_5(m + 1)) concerning every n belonging to the congruence class 0 modulo 18, as stated in the "Formula" section of the present sequence). - Marco Ripà, Feb 17 2022
a(n) satisfies the following multiplicative constraint: for each pair (m_1, m_2) of terms of A067251, a(m_1*m_2) is necessarily greater than or equal to the minimum between a(m_1) and a(m_2) (see Equation 2.4 and Appendix of "A Compact Notation for Peculiar Properties Characterizing Integer Tetration" in Links). - Gabriele Di Pietro, Apr 29 2025

Examples

			For m = 25, a(23) = 3 implies that 25^^(25 + i) freezes 3*i "new" rightmost digits (i >= 0).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6

Crossrefs

Programs

  • PARI
    \\ uses reducetower.gp from links
    f2(x,y) = my(k=0); while(reducetower(x, 10^k, y) == reducetower(x, 10^k, y+1), k++); k;
    f1(n) = polcoef(x*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)) + O(x^(n+1)), n, x); \\ A067251
    a(n) =  my(m=f1(n)); f2(m, m) - f2(m, m-1);
    lista(nn) = {for (n=2, nn, print1(a(n), ", "););} \\ Michel Marcus, Jan 27 2021

Formula

Let n > 2. For any integer c >= 0, if n is an element of the set {5, 7, 14, 17, 22, 23, 24, 29, 32, 39, 41, 45, 46}, then a(n + 45*c) >= 2; whereas a(n) = 1 otherwise. - Marco Ripà, Sep 28 2018
If n == 5 (mod 9), then a(n) = v_2(a(n)^2 - 1) - 1, where v_2(x) indicates the 2-adic valuation of x. - Marco Ripà, Dec 19 2021
If n == 1 (mod 18) and n <> 1, then a(n) = min(v_2(m - 1), v_5(m - 1)) (i.e., 1 plus the number of trailing zeros, if any, next to the rightmost digit of m);
if n == 10 (mod 18), then a(n) = min(v_2(m + 1), v_5(m - 1));
if n == {2,8}(mod 9) and n <> 2, then a(n) = v_5(m^2 + 1);
if n == {3,7}(mod 18), then a(n) = min(v_2(m + 1), v_5(n^2 + 1));
if n == {12,16}(mod 18), then a(n) = min(v_2(m - 1), v_5(n^2 + 1));
if n == 4 (mod 9), then a(n) = v_5(m + 1);
if n == 5 (mod 18), then a(n) = v_2(m - 1);
if n == 14 (mod 18), then a(n) = v_2(m + 1);
if n == 6 (mod 9), then a(n) = v_5(m - 1);
if n == 9 (mod 18), then a(n) = min(v_2(m - 1), v_5(m + 1));
if n == 0 (mod 18), then a(n) = min(v_2(m + 1), v_5(m + 1)) (i.e., number of digits of the rightmost repunit "9's" of m); where v_2(x) and v_5(x) indicates the 2-adic valuation of (x) and the 5-adic valuation of (x), respectively. - Marco Ripà, Feb 17 2022

Extensions

Edited by Jinyuan Wang, Aug 30 2020

A337392 Minimum m such that the convergence speed of m^^m is equal to n >= 2, where A317905(n) represents the convergence speed of m^^m (and m = A067251(n), the n-th non-multiple of 10).

Original entry on oeis.org

5, 25, 15, 95, 65, 385, 255, 1535, 1025, 6145, 4095, 24575, 16385, 98305, 65535, 393215, 262145, 1572865, 1048575, 6291455, 4194305, 25165825, 16777215, 100663295, 67108865, 402653185, 268435455, 1610612735, 1073741825, 6442450945, 4294967295, 25769803775
Offset: 2

Views

Author

Marco Ripà, Aug 25 2020

Keywords

Comments

This sequence has an unbounded number of terms, since it has been proved that the congruence speed (aka "convergence speed") of m^^m (an integer number by definition) covers any value from zero (iff m = 1) to infinity. In particular, for any n >= 2, a(n) == 5 (mod 10).
From Marco Ripà, Dec 19 2021: (Start)
Moreover, given any m which is congruent to 5 (mod 10), the congruence speed of m corresponds to the 2-adic valuation of (m^2 - 1) minus 1 (e.g., the congruence speed of 15 is equal to 4 since (15^2 - 1) is divisible by 2 exactly 5 times, so that 5 - 1 = 4 = congruence speed of the tetration base 15).
The aforementioned result, let us easily calculate the exact number of stable digits (#S(m, b)) of any tetration m^^b (i.e., the number of its last "frozen" digits) such that m is congruent to 5 (mod 10), for any b >= 3, as follows:
Let k = 1, 2, 3, ...
If m = 20*k - 5, then #S(m, b > 2) = b*(v_2(m^2 - 1) - 1) + 1;
If m = 20*k + 5, then #S(m, b > 2) = (b + 1)*(v_2(m^2 - 1) - 1);
If m = 5, then #S(m, 1) = 1, #S(m, 2) = 3, #S(m, 3) = 4, #S(m, b > 3) = 2.
(End)

Examples

			For n = 4, a(4) = 15 by Corollary 1 of "https://doi.org/10.7546/nntdm.2021.27.4.43-61" (see Equation 20). - _Marco Ripà_, Dec 19 2021
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6

Crossrefs

Formula

a(n) = 2^n*(2*cos(Pi*(n-1)/2) - 4*sin(Pi*(n-1)/2) + 5) + 1 iff n == {2,3} (mod 4), 2^n*(-2*cos(Pi*(n-1)/2) + 4*sin(Pi*(n-1)/2) + 5) - 1 iff n == {0,1} (mod 4), for n >= 2.
From Bruno Berselli, Sep 11 2020: (Start)
O.g.f.: 5*x^2*(1 + 5*x + 4*x^3)/((1 - 2*x)*(1 + 2*x)*(1 + x^2)).
a(n) = (2 - (-1)^n)*2^n + i^((n+1)*(n+2)), with i = sqrt(-1). (End)
From Marco Ripà, Dec 19 2021: (Start)
n = v_2(a(n)^2 - 1) - 1, where v_2(x) indicates the 2-adic valuation of x. (End)

A052382 Numbers without 0 in the decimal expansion, colloquial 'zeroless numbers'.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111, 112, 113
Offset: 1

Views

Author

Henry Bottomley, Mar 13 2000

Keywords

Comments

The entries 1 to 79 match the corresponding subsequence of A043095, but then 81, 91-98, 100, 102, etc. are only in one of the two sequences. - R. J. Mathar, Oct 13 2008
Complement of A011540; A168046(a(n)) = 1; A054054(a(n)) > 0; A007602, A038186, A038618, A052041, A052043, and A052045 are subsequences. - Reinhard Zumkeller, Apr 25 2012, Apr 07 2011, Dec 01 2009
a(n) = n written in base 9 where zeros are not allowed but nines are. The nine distinct digits used are 1, 2, 3, ..., 9 instead of 0, 1, 2, ..., 8. To obtain this sequence from the "canonical" base 9 sequence with zeros allowed, just replace any 0 with a 9 and then subtract one from the group of digits situated on the left. For example, 9^3 = 729 (10) (in base 10) = 1000 (9) (in base 9) = 889 (9-{0}) (in base 9 without zeros) because 100 (9) = [9-1]9 = 89 (9-{0}) and thus 1000 (9) = [89-1]9 = 889 (9-{0}). - Robin Garcia, Jan 15 2014
From Hieronymus Fischer, May 28 2014: (Start)
Inversion: Given a term m, the index n such that a(n) = m can be calculated by A052382_inverse(m) = m - sum_{1<=j<=k} floor(m/10^j)*9^(j-1), where k := floor(log_10(m)) [see Prog section for an implementation in Smalltalk].
Example 1: A052382_inverse(137) = 137 - (floor(137/10) + floor(137/100)*9) = 137 - (13*1 + 1*9) = 137 - 22 = 115.
Example 2: A052382_inverse(4321) = 4321 - (floor(4321/10) + floor(4321/100)*9 + floor(4321/1000)*81) = 4321 - (432*1 + 43*9 + 4*81) = 4321 - (432 + 387 + 324) = 3178. (End)
The sum of the reciprocals of these numbers from a(1)=1 to infinity, called the Kempner series, is convergent towards a limit: 23.103447... whose decimal expansion is in A082839. - Bernard Schott, Feb 23 2019
Integer n > 0 is encoded using bijective base-9 numeration, see Wikipedia link below. - Alois P. Heinz, Feb 16 2020

Examples

			For k >= 0, a(10^k) = (1, 11, 121, 1331, 14641, 162151, 1783661, 19731371, ...) = A325203(k). - _Hieronymus Fischer_, May 30 2012 and Jun 06 2012; edited by _M. F. Hasler_, Jan 13 2020
		

References

  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

Cf. A004719, A052040, different from A067251.
Column k=9 of A214676.
Cf. A011540 (complement), A043489, A054054, A168046.
Cf. A052383 (without 1), A052404 (without 2), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
Zeroless numbers in some other bases <= 10: A000042 (base 2), A032924 (base 3), A023705 (base 4), A248910 (base 6), A255805 (base 8), A255808 (base 9).
Cf. A082839 (sum of reciprocals).
Cf. A038618 (subset of primes)

Programs

  • Haskell
    a052382 n = a052382_list !! (n-1)
    a052382_list = iterate f 1 where
    f x = 1 + if r < 9 then x else 10 * f x' where (x', r) = divMod x 10
    -- Reinhard Zumkeller, Mar 08 2015, Apr 07 2011
    
  • Magma
    [ n: n in [1..114] | not 0 in Intseq(n) ]; // Bruno Berselli, May 28 2011
    
  • Maple
    a:= proc(n) local d, l, m; m:= n; l:= NULL;
          while m>0 do d:= irem(m, 9, 'm');
            if d=0 then d:=9; m:= m-1 fi;
            l:= d, l
          od; parse(cat(l))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jan 11 2015
    is_zeroless := n -> not is(0 in convert(n, base, 10)):
    select(is_zeroless, [seq(1..113)]);  # Peter Luschny, Jun 20 2025
  • Mathematica
    A052382 = Select[Range[100], DigitCount[#, 10, 0] == 0 &] (* Alonso del Arte, Mar 10 2011 *)
  • PARI
    select( {is_A052382(n)=n&&vecmin(digits(n))}, [0..111]) \\ actually: is_A052382 = (bool) A054054. - M. F. Hasler, Jan 23 2013, edited Jan 13 2020
    
  • PARI
    a(n) = for (w=0, oo, if (n >= 9^w, n -= 9^w, return ((10^w-1)/9 + fromdigits(digits(n, 9))))) \\ Rémy Sigrist, Jul 26 2017
    
  • PARI
    apply( {A052382(n,L=logint(n,9))=fromdigits(digits(n-9^L>>3,9))+10^L\9}, [1..100])
    next_A052382(n, d=digits(n+=1))={for(i=1, #d, d[i]|| return(n-n%(d=10^(#d-i+1))+d\9)); n} \\ least a(k) > n. Used in A038618.
    ( {A052382_vec(n,M=1)=M--;vector(n, i, M=next_A052382(M))} )(99) \\ n terms >= M
    \\ See OEIS Wiki page (cf. LINKS) for more programs. - M. F. Hasler, Jan 11 2020
    
  • Python
    A052382 = [n for n in range(1,10**5) if not str(n).count('0')]
    # Chai Wah Wu, Aug 26 2014
    
  • Python
    from sympy import integer_log
    def A052382(n):
        m = integer_log(k:=(n<<3)+1,9)[0]
        return sum((1+(k-9**m)//(9**j<<3)%9)*10**j for j in range(m)) # Chai Wah Wu, Jun 27 2025
  • Smalltalk
    A052382
    "Answers the n-th term of A052382, where n is the receiver."
    ^self zerofree: 10
    A052382_inverse
    "Answers that index n which satisfy A052382(n) = m, where m is the receiver.”
    ^self zerofree_inverse: 10
    zerofree: base
    "Answers the n-th zerofree number in base base, where n is the receiver. Valid for base > 2.
    Usage: n zerofree: b [b = 10 for this sequence]
    Answer: a(n)"
    | n m s c bi ci d |
    n := self.
    c := base - 1.
    m := (base - 2) * n + 1 integerFloorLog: c.
    d := n - (((c raisedToInteger: m) - 1)//(base - 2)).
    bi := 1.
    ci := 1.
    s := 0.
    1 to: m
    do:
    [:i |
    s := (d // ci \\ c + 1) * bi + s.
    bi := base * bi.
    ci := c * ci].
    ^s
    zerofree_inverse: base
    "Answers the index n such that the n-th zerofree number in base base is = m, where m is the receiver. Valid for base > 2.
    Usage: m zerofree_inverse: b [b = 10 for this sequence]
    Answer: n"
    | m p q s |
    m := self.
    s := 0.
    p := base.
    q := 1.
    [p < m] whileTrue:
    [s := m // p * q + s.
    p := base * p.
    q := (base - 1) * q].
    ^m - s
    "by Hieronymus Fischer, May 28 2014"
    
  • sh
    seq 0 1000 | grep -v 0; # Joerg Arndt, May 29 2011
    

Formula

a(n+1) = f(a(n)) with f(x) = 1 + if x mod 10 < 9 then x else 10*f([x/10]). - Reinhard Zumkeller, Nov 15 2009
From Hieronymus Fischer, Apr 30, May 30, Jun 08 2012, Feb 17 2019: (Start)
a(n) = Sum_{j=0..m-1} (1 + b(j) mod 9)*10^j, where m = floor(log_9(8*n + 1)), b(j) = floor((8*n + 1 - 9^m)/(8*9^j)).
Also: a(n) = Sum_{j=0..m-1} (1 + A010878(b(j)))*10^j.
a(9*n + k) = 10*a(n) + k, k=1..9.
Special values:
a(k*(9^n - 1)/8) = k*(10^n - 1)/9, k=1..9.
a((17*9^n - 9)/8) = 2*10^n - 1.
a((9^n - 1)/8 - 1) = 10^(n-1) - 1, n > 1.
Inequalities:
a(n) <= (1/9)*((8*n+1)^(1/log_10(9)) - 1), equality holds for n=(9^k-1)/8, k>0.
a(n) > (1/10)*((8*n+1)^(1/log_10(9)) - 1), n > 0.
Lower and upper limits:
lim inf a(n)/10^log_9(8*n) = 1/10, for n -> infinity.
lim inf a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/10, for n -> infinity.
lim sup a(n)/10^log_9(8*n) = 1/9, for n -> infinity.
lim sup a(n)/n^(1/log_10(9)) = 8^(1/log_10(9))/9, for n -> infinity.
G.f.: g(x) = (x^(1/8)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(9/8)*(1 - 10z(j)^9 + 9z(j)^10)/((1-z(j))(1-z(j)^9)), where z(j) = x^9^j.
Also: g(x) = (1/(1-x)) Sum_{j>=0} (1 - 10(x^9^j)^9 + 9(x^9^j)^10)*x^9^j*f_j(x)/(1-x^9^j), where f_j(x) = 10^j*x^((9^j-1)/8)/(1-(x^9^j)^9). Here, the f_j obey the recurrence f_0(x) = 1/(1-x^9), f_(j+1)(x) = 10x*f_j(x^9).
Also: g(x) = (1/(1-x))*((Sum{k=0..8} h_(9,k)(x)) - 9*h_(9,9)(x)), where h_(9,k)(x) = Sum_{j>=0} 10^j*x^((9^(j+1)-1)/8)*x^(k*9^j)/(1-x^9^(j+1)).
Generic formulas for analogous sequences with numbers expressed in base p and only using the digits 1, 2, 3, ... d, where 1 < d < p:
a(n) = Sum_{j=0..m-1} (1 + b(j) mod d)*p^j, where m = floor(log_d((d-1)*n+1)), b(j) = floor(((d-1)*n+1-d^m)/((d-1)*d^j)).
Special values:
a(k*(d^n-1)/(d-1)) = k*(10^n-1)/9, k=1..d.
a(d*((2d-1)*d^(n-1)-1)/(d-1)) = ((d+9)*10^n-d)/9 = 10^n + d*(10^n-1)/9.
a((d^n-1)/(d-1)-1) = d*(10^(n-1)-1)/9, n > 1.
Inequalities:
a(n) <= (10^log_d((d-1)*n+1)-1)/9, equality holds for n = (d^k-1)/(d-1), k > 0.
a(n) > (d/10)*(10^log_d((d-1)*n+1)-1)/9, n > 0.
Lower and upper limits:
lim inf a(n)/10^log_d((d-1)*n) = d/90, for n -> infinity.
lim sup a(n)/10^log_d((d-1)*n) = 1/9, for n -> infinity.
G.f.: g(x) = (1/(1-x)) Sum_{j>=0} (1 - (d+1)(x^d^j)^d + d(x^d^j)^(d+1))*x^d^j*f_j(x)/(1-x^d^j), where f_j(x) = p^j*x^((d^j-1)/(d-1))/(1-(x^d^j)^d). Here, the f_j obey the recursion f_0(x) = 1/(1-x^d), f_(j+1)(x) = px*f_j(x^d).
(End)
A052382 = { n | A054054(n) > 0 }. - M. F. Hasler, Jan 23 2013
From Hieronymus Fischer, Feb 20 2019: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 0.696899720...
Sum_{n>=1} 1/a(n)^2 = 1.6269683705819...
Sum_{n>=1} 1/a(n) = 23.1034479... = A082839. This so-called Kempner series converges very slowly. For the calculation of the sum, it is helpful to use the following fraction of partial sums, which converges rapidly:
lim_{n->infinity} (Sum_{k=p(n)..p(n+1)-1} 1/a(k)) / (Sum_{k=p(n-1)..p(n)-1} 1/a(k)) = 9/10, where p(n) = (9^n-1)/8, n > 1.
(End)

Extensions

Typos in formula section corrected by Hieronymus Fischer, May 30 2012
Name clarified by Peter Luschny, Jun 20 2025

A008592 Multiples of 10: a(n) = 10*n.

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530
Offset: 0

Views

Author

Keywords

Comments

Number of 3 X n binary matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01,1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i11 and n>1. - Sergey Kitaev, Nov 12 2004
If Y is a 5-subset of an n-set X then, for n>=5, a(n-4) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Complement of A067251; A168184(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2009
Where record values occur for the number of partitions of n into powers of 10: A179052(n) = A179051(a(n)). - Reinhard Zumkeller, Jun 27 2010
Numbers ending in 0. - Wesley Ivan Hurt, Apr 10 2016

Crossrefs

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
G.f.: 10*x/(x-1)^2.
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = Sum_{i=2n-2..2n+2} i. - Wesley Ivan Hurt, Apr 11 2016
E.g.f.: 10*x*exp(x). - Stefano Spezia, May 31 2021

A373387 Constant congruence speed of the tetration base n (in radix-10), or -1 if n is a multiple of 10.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 2, 1, 1, -1, 1, 1, 1, 1, 4, 1, 1, 2, 1, -1, 1, 1, 1, 2, 3, 2, 1, 1, 1, -1, 1, 2, 1, 1, 2, 1, 1, 1, 1, -1, 1, 1, 2, 1, 2, 1, 1, 1, 2, -1, 2, 1, 1, 1, 3, 1, 3, 1, 1, -1, 1, 1, 1, 1, 6, 1, 1, 3, 1, -1, 1, 1, 1, 2, 2, 2, 1, 1, 1, -1, 1, 2, 1
Offset: 0

Views

Author

Marco Ripà, Jun 02 2024

Keywords

Comments

It has been proved that this sequence contains arbitrarily large entries, while a(0) = a(1) = 0 by definition (given the fact that 0^0 = 1 is a reasonable choice and then 0^^b is 1 if b is even, whereas 0^^b is 0 if b is even). For any nonnegative integer n which is not a multiple of 10, a(n) is given by Equation (16) of the paper "Number of stable digits of any integer tetration" (see Links).
Moreover, a sufficient condition for having a constant congruence speed of any tetration base n, greater than 1 and not a multiple of 10, is that b >= 2 + v(n), where v(n) is equal to
u_5(n - 1) iff n == 1 (mod 5),
u_5(n^2 + 1) iff n == 2,3 (mod 5),
u_5(n + 1) iff n == 4 (mod 5),
u_2(n^2 - 1) - 1 iff n == 5 (mod 10)
(u_5 and u_2 indicate the 5-adic and the 2-adic valuation of the argument, respectively).
Therefore b >= n + 1 is always a sufficient condition for the constancy of the congruence speed (as long as n > 1 and n <> 0 (mod 10)).
As a trivial application of this property, we note that the constant congruence speed of the tetration 3^^b is 1 for any b > 1, while 3^3 is not congruent to 3 modulo 10. Thus, we can easily calculate the exact number of the rightmost digits of Graham’s number, G(64) (see A133613), that are the same of the homologous rightmost digits of 3^3^3^... since 3^3 is not congruent to 3 modulo 10, while the congruence speed of n = 3 is constant from height 2 (see A372490). This means that the last slog_3(G(64))-1 digits of G(64) are the same slog_3(G(64))-1 final digits of 3^3^3^..., whereas the difference between the slog_3(G(64))-th digit of G(64) and the slog_3(G(64))-th digit of 3^3^3^... is congruent to 6 modulo 10.
The constant congruence speed of tetration satisfies the following multiplicative constraint: for each pair (n_1, n_2) of nonnegative integers whose product is not divisible by 10, a(n_1*n_2) is necessarily greater than or equal to the minimum between a(n_1) and a(n_2) (see Equation 2.4 and Appendix of "A Compact Notation for Peculiar Properties Characterizing Integer Tetration" in Links). - Marco Ripà, Apr 26 2025

Examples

			a(3) = 1 since 3^^b := 3^3^3^... freezes 1 more rightmost digit for each unit increment of b, starting from b = 2.
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.

Crossrefs

Programs

  • Python
    def v2(n):
        count = 0
        while n % 2 == 0 and n > 0:
            n //= 2
            count += 1
        return count
    def v5(n):
        count = 0
        while n % 5 == 0 and n > 0:
            n //= 5
            count += 1
        return count
    def V(a):
        mod_20 = a % 20
        mod_10 = a % 10
        if mod_20 == 1:
            return min(v2(a - 1), v5(a - 1))
        elif mod_20 == 11:
            return min(v2(a + 1), v5(a - 1))
        elif mod_10 in {2, 8}:
            return v5(a ** 2 + 1)
        elif mod_20 in {3, 7}:
            return min(v2(a + 1), v5(a ** 2 + 1))
        elif mod_20 in {13, 17}:
            return min(v2(a - 1), v5(a ** 2 + 1))
        elif mod_10 == 4:
            return v5(a + 1)
        elif mod_20 == 5:
            return v2(a - 1)
        elif mod_20 == 15:
            return v2(a + 1)
        elif mod_10 == 6:
            return v5(a - 1)
        elif mod_20 == 9:
            return min(v2(a - 1), v5(a + 1))
        elif mod_20 == 19:
            return min(v2(a + 1), v5(a + 1))
    def generate_sequence():
        sequence = []
        for a in range(1026):
            if a == 0 or a == 1:
                sequence.append(0)
            elif a % 10 == 0:
                sequence.append(-1)
            else:
                sequence.append(V(a))
        return sequence
    sequence = generate_sequence()
    print("a(0), a(1), a(2), ..., a(1025) =", ", ".join(map(str, sequence)))

Formula

a(n) = -1 iff n == 0 (mod 10), a(n) = 0 iff n = 1 or 2. Otherwise, a(n) >= 1 and it is given by Equation (16) from Ripà and Onnis.

A168184 Characteristic function of numbers that are not multiples of 10.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Crossrefs

Programs

  • Haskell
    a168184 = (1 -) . (0 ^) . (`mod` 10)
    a168184_list = cycle [0,1,1,1,1,1,1,1,1,1]
    -- Reinhard Zumkeller, Oct 10 2012
    
  • Mathematica
    Table[If[Mod[n,10]==0,0,1],{n,0,110}] (* or *) PadRight[{},110,{0,1,1,1,1,1,1,1,1,1}] (* Harvey P. Dale, Jun 03 2023 *)
  • PARI
    a(n)=n%10>0 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n+10) = a(n);
a(n) = A000007(A010879(n));
a(A067251(n)) = 1; a(A008592(n)) = 0;
not the same as A168046: a(n)=A168046 for n<=100;
A033442(n) = Sum_{k=0..n} a(k)*(n-k).
Dirichlet g.f.: (1-1/10^s)*zeta(s). - R. J. Mathar, Feb 19 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013

A288069 Quotients obtained when the Zuckerman numbers are divided by the product of their digits.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 6, 3, 3, 2, 111, 56, 23, 8, 22, 9, 9, 5, 53, 18, 14, 52, 21, 4, 18, 51, 13, 8, 7, 17, 1111, 556, 371, 223, 186, 377, 28, 37, 19, 303, 12, 437, 74, 28, 59, 9, 49, 528, 67, 93, 27, 1037, 174, 22, 151, 13, 184, 29, 514, 66, 46
Offset: 1

Views

Author

Bernard Schott, Jun 05 2017

Keywords

Comments

The Zuckerman numbers (A007602) are the numbers that are divisible by the product of their digits.
Question: Is A067251 a subsequence? No, it appears in A056770 that not all integers other than multiples of 10 can be obtained as quotient, such as 15, 16, 24, 25, 26, 32, .... (see A342941).
The limit of the sequence is infinite: for any x, there is some N such that, for all n > N, a(n) > x. Proof: a Zuckerman number with d digits is at least 10^(d-1) and has a digit product at most 9^d and so has a quotient at least 10^(d-1)/9^d which goes to infinity with d. - Charles R Greathouse IV, Jun 05 2017
The repunits A002275 are a subsequence. - Peter Schorn, Apr 05 2025

Examples

			a(11) = 12/(1*2) = 6; a(13) = 24/(2*4) = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L,p;
       p:= convert(convert(n,base,10),`*`);
       if p > 0 then
         if n mod p = 0 then return n/p fi
       fi
    end proc:
    map(f, [$1..10^4]); # Robert Israel, Jun 05 2017
  • Mathematica
    Select[Table[n/Max[Times@@IntegerDigits[n],Pi/100],{n,5000}],IntegerQ] (* Harvey P. Dale, Aug 16 2021 *)

A076654 Smallest natural number not a multiple of 10, not occurring earlier and starting with the end of the previous term.

Original entry on oeis.org

1, 11, 12, 2, 21, 13, 3, 31, 14, 4, 41, 15, 5, 51, 16, 6, 61, 17, 7, 71, 18, 8, 81, 19, 9, 91, 101, 102, 22, 23, 32, 24, 42, 25, 52, 26, 62, 27, 72, 28, 82, 29, 92, 201, 103, 33, 34, 43, 35, 53, 36, 63, 37, 73, 38, 83, 39, 93, 301, 104, 44, 45, 54, 46, 64, 47, 74, 48, 84, 49, 94
Offset: 1

Views

Author

Amarnath Murthy, Oct 28 2002

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (delete)
    a076654 n = a076654_list !! (n-1)
    a076654_list = f a067251_list 1 where
      f xs z = g xs where
        g (y:ys) = if a000030 y == mod z 10 then y : f (delete y xs) y else g ys
    -- Reinhard Zumkeller, Aug 15 2015
  • Maple
    startsWith := proc(n,dig) local nshft ; nshft := n ; while nshft >= 10 do nshft := floor(nshft/10) ; od ; if dig = nshft then RETURN(true) ; else RETURN(false) ; fi ; end: A076654 := proc(nmax) local candid,a; a := [1] ; while nops(a) < nmax do candid := 2 ; while not startsWith(candid,op(-1,a) mod 10) or candid mod 10 = 0 or candid in a do candid := candid+1 ; od ; a := [op(a),candid] ; od ; RETURN(a) ; end: a := A076654(200) : for n from 1 to nops(a) do printf("%d,",op(n,a)) ; od ; # R. J. Mathar, Nov 12 2006

Formula

A000030(a(n+1)) = A010879(a(n)). - Reinhard Zumkeller, Aug 15 2015

Extensions

More terms from R. J. Mathar, Nov 12 2006

A321130 Values of m (mod 25) such that V(m) >= 2, where V(m) indicates the constant convergence speed of the tetration base m.

Original entry on oeis.org

0, 1, 5, 7, 15, 18, 24
Offset: 1

Views

Author

Marco Ripà, Oct 27 2018

Keywords

Comments

This sequence represents the values of the base a such that a^^m, where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))), is characterized by a convergence speed at or above 2 (fast m-adic convergence). Only 26% of the positive integers belong to this list (see A317905).

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6

Crossrefs

Formula

For m = 57, m (mod 25) == 7 and 7^^n has a convergence speed greater than 1, since A317905(m = 57) = 3 > 1 and also A317905(m = 7) = 2 > 1.

A321131 Values of m (mod 25), where A317905(m) = 1. Values of m (mod 25) such that V(m) = 1, where V(m) indicates the constant convergence speed of the tetration base m.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23
Offset: 2

Views

Author

Marco Ripà, Oct 27 2018

Keywords

Comments

This sequence represents the values of the base a such that a^^m, where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))), is characterized by a unitary convergence speed.
64% of the positive integers belong to this list (see A317905).

Examples

			For m = 47, m (mod 25) == 22 and 22^^n has a unitary convergence speed, since A317905(m = 47) = 1 = A317905(m = 22).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6

Crossrefs

Showing 1-10 of 36 results. Next