A067254 Numbers k such that the decimal encoding of the prime factorization of k (A067599) ends in k.
11, 8571, 11371, 190911, 12711811, 14713491, 19090911, 71119711, 12531135391, 15311195711, 112717566411, 158318548011, 518914376931, 7292811659931
Offset: 1
Examples
The prime factorization of 190911 is 3^1 * 7^1 * 9091^1 with decimal encoding 317190911, which ends in 190911. Hence 190911 is a term of the sequence.
Programs
-
Mathematica
(*returns true if a ends with b, false o.w.*) f[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; e = StringLength[c]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[2]] == e, r = True]]; r]; (*gives the decimal encoding of the prime factorization of n*) g[n_] := FromDigits[Flatten[IntegerDigits[FactorInteger[n]]]]; Do[If[f[g[n], n], Print[n]], {n, 1, 10^6} ]
-
PARI
{a067254(a,b) = local(n,v,k,j); for(n=max(2,a),b,v=factor(n); if(eval(concat(vector(matsize(v)[1],k, concat(vector(matsize(v)[2],j,Str(v[k,j]))))))%(10^length(Str(n)))==n,print1(n,",")))} a067254(2,2*10^7) \\ Klaus Brockhaus, Feb 22 2002
Extensions
a(5)-a(7) from Klaus Brockhaus, Feb 22 2002
a(8)-a(10) from Donovan Johnson, Mar 26 2010
a(11)-a(12) from Donovan Johnson, Dec 04 2012
a(13) from Giovanni Resta, Jun 09 2017
a(14) from Giovanni Resta, Jun 26 2017
Comments