A067323 Catalan triangle A028364 with row reversion.
1, 2, 1, 5, 3, 2, 14, 9, 7, 5, 42, 28, 23, 19, 14, 132, 90, 76, 66, 56, 42, 429, 297, 255, 227, 202, 174, 132, 1430, 1001, 869, 785, 715, 645, 561, 429, 4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430, 16796, 11934, 10504, 9646, 8986, 8398, 7810, 7150, 6292, 4862
Offset: 0
Examples
Triangle begins: 1; 2, 1; 5, 3, 2; 14, 9, 7, 5; 42, 28, 23, 19, 14; 132, 90, 76, 66, 56, 42; 429, 297, 255, 227, 202, 174, 132; 1430, 1001, 869, 785, 715, 645, 561, 429; 4862, 3432, 3003, 2739, 2529, 2333, 2123, 1859, 1430; ...
References
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (19) - (23), p. 672.
- B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eqs. (43), (44), pp. 1501-2 and eq.(81) with eqs.(80) and (81).
- T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, pp. 269, 275.
- G. Schuetz and E. Domany, Phase Transitions in an Exactly Soluble one-Dimensional Exclusion Process, J. Stat. Phys. 72 (1993) 277-295, eq. (2.18), p. 283, with eqs. (2.13)-(2.15).
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- Steve Butler, Kimberly Hadaway, Victoria Lenius, Preston Martens, and Marshall Moats, Lucky cars and lucky spots in parking functions, arXiv:2412.07873 [math.CO], 2024. See p. 14.
- Wolfdieter Lang, First 10 rows.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i)) end: T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n))(b((n+1)$2)): seq(T(n), n=0..10); # Alois P. Heinz, Nov 28 2015
-
Mathematica
t[n_, k_] := Sum[ CatalanNumber[n - j]*CatalanNumber[j], {j, 0, k}]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}]] (* Jean-François Alcover, Jul 17 2013 *)
Formula
a(n,m) = A028364(n,n-m), n>=m>=0, else 0.
G.f. for column m>=1 (without leading zeros): (c(x)^3)sum(C(m-1, k)*c(x)^k, k=0..m-1), with C(n, m) := (m+1)*binomial(2*n-m, n-m)/(n+1) (Catalan convolutions A033184); and for m=0: c^2(x), where c(x) is g.f. of A000108 (Catalan).
G.f. for diagonal sequences: see g.f. for columns of A028364.
Comments