cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A067324 Third column of triangle A067323.

Original entry on oeis.org

2, 7, 23, 76, 255, 869, 3003, 10504, 37128, 132430, 476102, 1723528, 6277505, 22988385, 84592275, 312636240, 1159979700, 4319218530, 16134883410, 60452176200, 227110782990, 855361970034, 3228982640478
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

Also third diagonal of triangle A028364.

Crossrefs

Cf. A000245 (second column).

Formula

a(n)= A067323(n+2, 2)= C(n+3)-(C(n+2)+C(n+1)), C(n) := A000108(n) (Catalan).
G.f.: (c(x)^3)*(1+c(x)), with c(x) g.f. of A000108 (Catalan).

A067325 Fourth column of triangle A067323.

Original entry on oeis.org

5, 19, 66, 227, 785, 2739, 9646, 34268, 122706, 442510, 1605956, 5861481, 21502585, 79243395, 293246550, 1089264360, 4059928950, 15179606010, 56917649820, 213982542150, 806429435994, 3046017513198
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

Also fourth diagonal of triangle A028364.

Crossrefs

Cf. A067324 (third column).

Formula

a(n)= A067323(n+3, 3)= C(n+4)-(C(n+3)+C(n+2)+2*C(n+1)), C(n) := A000108(n) (Catalan).
G.f.: (c(x)^3)*(2+2*c(x)+c(x)^2), with c(x) g.f. of A000108 (Catalan).

A067326 Fifth column of triangle A067323.

Original entry on oeis.org

14, 56, 202, 715, 2529, 8986, 32123, 115556, 418200, 1521976, 5567551, 20462525, 75528895, 279874350, 1040790135, 3883140600, 14531382060, 54529456320, 205146226200, 773608833894, 2923686178098, 11071970477876
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

Also fifth diagonal of triangle A028364.

Crossrefs

Cf. A067325 (fourth column).

Formula

a(n)= A067323(n+4, 4)= C(n+5)-sum(C(k)*C(n+4-k), k=0..3), C(n) := A000108(n) (Catalan).
G.f.: (c(x)^3)*(5+5*c(x)+3*c(x)^2+c(x)^3), with c(x) g.f. of A000108 (Catalan).

A116871 Sixth column of triangle A067323.

Original entry on oeis.org

42, 174, 645, 2333, 8398, 30275, 109550, 398180, 1453908, 5332407, 19639521, 72616727, 269473750, 1003347975, 3747412770, 14036374680, 52714429260, 198459284400, 748867149234, 2831788492218, 10729442739596
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

Also sixth diagonal sequence of triangle A028364.

Crossrefs

Cf. A067326 (fifth column of A067323).

Formula

a(n)= A067323(n+5,5), n>=0.
a(n)= A028364(5+n,n) = sum(C(k)*C(5+n-k),k=0..n), n>=0, with the Catalan numbers C(n):=A000108(n).
G.f.: (c(x)^3)sum(C(4, k)*c(x)^k, k=0..4), with C(n, m) := (m+1)*binomial(2*n-m, n-m)/(n+1) (Catalan convolutions A033184).

A000245 a(n) = 3*(2*n)!/((n+2)!*(n-1)!).

Original entry on oeis.org

0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, 41990, 149226, 534888, 1931540, 7020405, 25662825, 94287120, 347993910, 1289624490, 4796857230, 17902146600, 67016296620, 251577050010, 946844533674, 3572042254128, 13505406670700, 51166197843852, 194214400834356
Offset: 0

Views

Author

Keywords

Comments

This sequence represents the expected saturation of a binary search tree (or BST) on n nodes times the number of binary search trees on n nodes, or alternatively, the sum of the saturation of all binary search trees on n nodes. - Marko Riedel, Jan 24 2002
1->12, 2->123, 3->1234 etc. starting with 1, gives A007001: 1, 12, 12123, 12123121231234... summing the digits gives this sequence. - Miklos Kristof, Nov 05 2002
a(n-1) = number of n-th generation vertices in the tree of sequences with unit increase labeled by 2 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
With offset 1, number of permutations beginning with 12 and avoiding 32-1.
Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch but do not cross the line x-y=1. - Herbert Kociemba, May 24 2004
a(n) is the number of Dyck (n+1)-paths that start with UU. For example, a(2)=3 counts UUUDDD, UUDUDD, UUDDUD. - David Callan, Dec 08 2004
a(n) is the number of Dyck (n+2)-paths that start with UUDU. For example, a(2)=3 counts UUDUDDUD, UUDUDUDD, UUDUUDDD. - David Scambler, Feb 14 2011
Hankel transform is (0,-1,-1,0,1,1,0,-1,-1,0,...). Hankel transform of a(n+1) is (1,0,-1,-1,0,1,1,0,-1,-1,0,...). - Paul Barry, Feb 08 2008
Starting with offset 1 = row sums of triangle A154558. - Gary W. Adamson, Jan 11 2009
Starting with offset 1 equals INVERT transform of A014137, partial sums of the Catalan numbers: (1, 2, 4, 9, 23, ...). - Gary W. Adamson, May 15 2009
With offset 1, a(n) is the binomial transform of the shortened Motzkin numbers: 1, 2, 4, 9, 21, 51, 127, 323, ... (A001006). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Sep 07 2009
The Catalan sequence convolved with its shifted variant, e.g. a(5) = 90 = (1, 1, 2, 5, 14) dot (42, 14, 5, 2, 1) = (42 + 14 + 10 + 10 + 14 ) = 90. - Gary W. Adamson, Nov 22 2011
a(n+2) = A214292(2*n+3,n). - Reinhard Zumkeller, Jul 12 2012
With offset 3, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding, i.e., do not contain a three term monotone subsequence, for which the first ascent is at positions (3,4); see Connolly link. There it is shown in general that the k-th Catalan Convolution is the number of 123-avoiding permutations for which the first ascent is at (k, k+1). (For n=k, the first ascent is defined to be at positions (k,k+1) if the permutation is the decreasing permutation with no ascents.) - Anant Godbole, Jan 17 2014
With offset 3, a(n)=number of permutations on {1,2,...,n} that are 123-avoiding and for which the integer n is in the 3rd spot; see Connolly link. For example, there are 297 123-avoiding permutations on n=9 at which the element 9 is in the third spot. - Anant Godbole, Jan 17 2014
With offset 1, a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off y = x to the right exactly once but do not cross y = x vertically. Details can be found in Section 4.4 in Pan and Remmel's link. - Ran Pan, Feb 01 2016
The total number of returns (downsteps which end on the line y=0) within the set of all Dyck paths from (0,0) to (2n,0). - Cheyne Homberger, Sep 05 2016
a(n) is the number of intervals of the form [s,w] that are distributive (equivalently, modular) lattices in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
a(n+2) is the number of coalescent histories for a pair (G,S) where G is a gene tree with 3-pseudocaterpillar shape and n leaves, S is a species tree with caterpillar shape and n leaves, and G and S have identical leaf labeling. - Noah A Rosenberg, Jun 15 2022
a(n) is the number of parking functions of size n avoiding the patterns 132, 213, and 312. - Lara Pudwell, Apr 10 2023
a(n) is the number of parking functions of size n avoiding the patterns 123 and 213. - Lara Pudwell, Apr 10 2023

References

  • Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_3(z).
  • Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences of Catalan numbers A000108.
T(n, n+3) for n=0, 1, 2, ..., array T as in A047072.
Cf. A099364.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Column k=1 of A067323.

Programs

  • GAP
    Concatenation([0],List([1..30],n->3*Factorial(2*n)/(Factorial(n+2)*Factorial(n-1)))); # Muniru A Asiru, Aug 09 2018
  • Magma
    [0] cat [3*Factorial(2*n)/(Factorial(n+2)*Factorial(n-1)): n in [1..30]]; // Vincenzo Librandi, Feb 15 2016
    
  • Maple
    A000245 := n -> 3*binomial(2*n, n-1)/(n+2);
    seq(A000245(n), n=0..27);
  • Mathematica
    Table[3(2n)!/((n+2)!(n-1)!),{n,0,30}] (* or *) Table[3*Binomial[2n,n-1]/(n+2),{n,0,30}] (* or *) Differences[CatalanNumber[Range[0,31]]] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    a(n)=if(n<1,0,3*(2*n)!/(n+2)!/(n-1)!)
    
  • Sage
    [catalan_number(i+1) - catalan_number(i) for i in range(28)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    def A000245_list(n) :
        D = [0]*(n+1); D[1] = 1
        b = False; h = 1; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1; R.append(D[2])
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A000245_list(29) # Peter Luschny, Jun 03 2012
    

Formula

a(n) = A000108(n+1) - A000108(n).
G.f.: x*(c(x))^3 = (-1+(1-x)*c(x))/x, c(x) = g.f. for Catalan numbers. Also a(n) = 3*n*Catalan(n)/(n+2). - Wolfdieter Lang
For n > 1, a(n) = 3a(n-1) + Sum[a(k)*a(n-k-2), k=1,...,n-3]. - John W. Layman, Dec 13 2002; proved by Michael Somos, Jul 05 2003
G.f. is A(x) = C(x)*(1-x)/x-1/x = x(1+x*C(x)^2)*C(x)^2 where C(x) is g.f. for Catalan numbers, A000108.
G.f. satisfies x^2*A(x)^2 + (3*x-1)*A(x) + x = 0.
Series reversion of g.f. A(x) is -A(-x). - Michael Somos, Jan 21 2004
a(n+1) = Sum_{i+j+k=n} C(i)C(j)C(k) with i, j, k >= 0 and where C(k) denotes the k-th Catalan number. - Benoit Cloitre, Nov 09 2003
An inverse Chebyshev transform of x^2. - Paul Barry, Oct 13 2004
The sequence is 0, 0, 1, 0, 3, 0, 9, 0, ... with zeros restored. Second binomial transform of (-1)^n*A005322(n). The g.f. is transformed to x^2 under the Chebyshev transformation A(x)->(1/(1+x^2))A(x/(1+x^2)). For a sequence b(n), this corresponds to taking Sum_{k=0..floor(n/2)} C(n-k, k)(-1)^k*b(n-2k), or Sum_{k=0..n} C((n+k)/2, k)*b(k)*(-1)^((n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Oct 13 2004
G.f.: (c(x^2)*(1-x^2)-1)/x^2, c(x) the g.f. of A000108; a(n) = Sum_{k=0..n} (k+1)*C(n, (n-k)/2)*(-1)^k*(C(2,k)-2*C(1,k)+C(0, k))*(1+(-1)^(n-k))/(n+k+2). - Paul Barry, Oct 13 2004
a(n) = Sum_{k=0..n} binomial(n,k)*2^(n-k)*(-1)^(k+1)*binomial(k, floor((k-1)/2)). - Paul Barry, Feb 16 2006
E.g.f.: exp(2*x)*(Bessel_I(1,2x) - Bessel_I(2,2*x)). - Paul Barry, Jun 04 2007
a(n) = (1/Pi)*Integral_{x=0..4} x^n*(x-1)*sqrt(x*(4-x))/(2*x). - Paul Barry, Feb 08 2008
D-finite with recurrence: For n > 1, a(n+1) = 2*(2n+1)*(n+1)*a(n)/((n+3)*n). - Sean A. Irvine, Dec 09 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n >= 2, a(n-1) = (-1)^(n-2)*coeff(charpoly(A,x),x^2). - Milan Janjic, Jul 08 2010
a(n) = sum of top row terms of M^(n-1), M = an infinite square production matrix as follows:
2, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
E.g.f.: exp(2*x)*(BesselI(2,2*x)) = Q(0) - 1 where Q(k) = 1 - 2*x/(k + 1 - 3*((k+1)^2)/((k^2) + 8*k + 9 - (k+2)*((k+3)^2)*(2*k+3)/((k+3)*(2*k+3) - 3*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
a(n) = -binomial(2*n,n)/(n+1)*hypergeom([-1,n+1/2],[n+2],4). - Peter Luschny, Aug 15 2012
a(n) = Sum_{i=0..n-1} C(i)*C(n-i), where C(i) denotes the i-th Catalan number. - Dmitry Kruchinin, Mar 02 2013
a(n) = binomial(2*n-1, n) - binomial(2*n-1, n-3). - Johannes W. Meijer, Jul 31 2013
a(n) ~ 3*4^n/(n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Feb 26 2016
a(n) = ((-1)^n/(n+1))*Sum_{i=0..n-1} (-1)^(i+1)*(n+1-i)*binomial(2*n+2,i), n>=0. - Taras Goy, Aug 09 2018
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 14*Pi/(27*sqrt(3)) + 5/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 164*log(phi)/(75*sqrt(5)) + 7/25, where phi is the golden ratio (A001622). (End)
a(n) = 3*Sum_{k = 0..n-2} (-1)^k * binomial(2*n-k-1, n+1)*binomial(n+1, k)/(k + 1) for n >= 2. - Peter Bala, Sep 02 2024
a(n) = (3*n/(n+2))*A000108(n). - Taras Goy, Dec 20 2024

Extensions

I changed the description and added an initial 0, to make this coincide with the first differences of the Catalan numbers A000108. Some of the other lines will need to be changed as a result. - N. J. A. Sloane, Oct 31 2003

A028364 Triangle T(n,m) = Sum_{k=0..m} Catalan(n-k)*Catalan(k).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 9, 14, 14, 19, 23, 28, 42, 42, 56, 66, 76, 90, 132, 132, 174, 202, 227, 255, 297, 429, 429, 561, 645, 715, 785, 869, 1001, 1430, 1430, 1859, 2123, 2333, 2529, 2739, 3003, 3432, 4862, 4862, 6292, 7150, 7810, 8398, 8986, 9646, 10504, 11934, 16796
Offset: 0

Views

Author

Keywords

Comments

There are several versions of a Catalan triangle: see A009766, A008315, A028364.
The subtriangle [1], [2, 3], [5, 7, 9], ..., namely T(N,M-1), for N >= 1, M=1..N, appears as one-point function in the totally asymmetric exclusion process for the parameters alpha=1=beta. See the Derrida et al. and Liggett references given under A067323, where these triangle entries are called T_{N,N+M-1} for the given alpha and beta values. See the row reversed triangle A067323.
Consider a Dyck path as a path with steps N=(0,1) and E=(1,0) from (0,0) to (n,n) that stays weakly above y=x. T(n,m) is the number of Dyck paths of semilength n+1 where the (m+1)st north step is followed by an east step. - Lara Pudwell, Apr 12 2023

Examples

			Triangle begins
   1;
   1,  2;
   2,  3,  5;
   5,  7,  9, 14;
  14, 19, 23, 28, 42;
		

Crossrefs

Cf. A000108 (column 0 and main diagonal), A001700 (row sums), A065097 (T(2*n-1, n-1)), A201205 (central terms).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
          expand(b(n-1, j)*`if`(i>n, x, 1)), j=1..i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b((n+1)$2)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    t[n_, k_] = Sum[CatalanNumber[n-j]*CatalanNumber[j], {j, 0, k}]; Flatten[Table[t[n, k], {n, 0, 8}, {k, 0, n}]] (* Jean-François Alcover, Jul 22 2011 *)

Formula

T(n,k) = Sum_{j>=0} A039598(k,j)*A039599(n-k,j). - Philippe Deléham, Feb 18 2004
Sum_{k>=0} T(n,k) = A001700(n). T(n,k) = A067323(n,n-k), n >= k >= 0, otherwise 0. - Philippe Deléham, May 26 2005
G.f. for column sequences m >= 0: (-(c(m,x)-1)/x+c(m,x)*c(x))/x^m with the g.f. c(x) of A000108 (Catalan) and c(m,x):=sum(C(k)*x^k,k=0..m) with C(n):=A000108(n). - Wolfdieter Lang, Mar 24 2006
G.f. for column sequences m >= 0 (without leading zeros): c(x)*Sum_{k=0..m} C(m,k)*c(x)^k with the g.f. c(x) of A000108 (Catalan) and C(n,m) is the Catalan triangle A033184(n,m). - Wolfdieter Lang, Mar 24 2006
T(n,n) = T(n,k) + T(n,n-1-k) = A000108(n+1), n > 0, k = 0..floor((n+1)/2). - Yuchun Ji, Jan 09 2019
G.f. for triangle: Sum_{n>=0, m>=0} T(n, m)*x^n*y^m = (c(x)-c(xy))/(x(1-y)c(x)) with the g.f. c(x) of A000108 (Catalan). - Lara Pudwell, Apr 12 2023

A067304 Generalized Catalan triangle A067298 with row reversion.

Original entry on oeis.org

1, 2, 1, 9, 5, 4, 64, 36, 32, 28, 584, 328, 300, 284, 256, 6144, 3440, 3184, 3072, 2960, 2704, 70576, 39408, 36704, 35680, 34896, 33872, 31168, 859520, 478912, 447744, 436928, 429760, 422592, 411776, 380608, 10909440, 6068480, 5687872, 5563200, 5487488, 5421952, 5346240, 5221568, 4840960
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

Identity for each row n >= 1: T(n, m) + T(n, n-m+1) = A067297(n+1) (convolution of generalized Catalan numbers) for every m = 1..floor((n+1)/2). E.g., T(2*k+1, k+1) = A067297(2*(k+1))/2.

Examples

			Triangle begins:
    1;
    2,   1;
    9,   5,   4;
   64,  36,  32,  28;
  584, 328, 300, 284, 256;
  ...
n=3: T(3, 0) = 64 = 36+28 = 32+32.
		

Crossrefs

The columns give for m=0..4: A067297 (diagonals of A067298), A067305, A067306, A067307, A067308.
Cf. A067302 (row sums), A067323 (corresponding triangle for ordinary Catalan numbers).

Formula

T(n, m) = A067298(n, n-m), n >= m >= 0, otherwise 0.
G.f. for column m >= 1 (without leading zeros): (2^(2*ceiling(m/2))*p(m, y)*(y^3)/(1+y)^4, where y = y(x) = c(4*x), with c(x) = g.f. of A000108 (Catalan) and the row polynomials p(n, y) = Sum_{k=0..n} A067329(n, k)*y^k, n >= 1. For m = 0: ((y*(3+y))^2)/(1+y)^4 with y = y(x) = c(4*x) (see A067297).

Extensions

More terms from Jinyuan Wang, Apr 20 2025

A201205 Bisection of half-convolution of Catalan sequence A000108; even part.

Original entry on oeis.org

1, 3, 23, 227, 2529, 30275, 380162, 4939443, 65844845, 895451117, 12374186318, 173257703723, 2452607696798, 35042725663002, 504697422982484, 7319313029400467, 106793147620036005, 1566546633240722681, 23089471526179716182, 341774295456352388245
Offset: 0

Views

Author

Wolfdieter Lang, Jan 02 2012

Keywords

Comments

For the definition of the half-convolution of a sequence with itself see a comment to A201204.
The odd part of this bisection is found under A065097.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1+2*n,
          (2*n*(256*n^5-544*n^4+256*n^3+75*n^2-69*n+12)*a(n-1)
           -(8*(4*n-5))*(4*n-3)*(8*n^2+n-1)*(2*n-3)^2*a(n-2))/
          ((2*n+1)*n*(8*n^2-15*n+6)*(n+1)^2))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    Table[(CatalanNumber[2 n + 1] + CatalanNumber[n]^2)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Formula

a(n) = sum(Catalan(k)*Catalan(2*n-k),k=0..n), n>=0, with Catalan(n)=A000108(n).
O.g.f: Ge(x)=(catao(x)+cata2(x))/2 with catao(x):= sum(Catalan(2*k+1)*x^k,k=0..infty) = (cata(sqrt(x)) - cata(-sqrt(x)))/(2*x), with the o.g.f. cata(x) of A000108, and cata2(x):=sum(Catalan(n)^2,n=0..infty) given in A001246 as (-1 + hypergeom( [-1/2,-1/2],[1],16*x))/(4*x).
a(n) = A028364(2n,n) = A067323(2n,n). - Alois P. Heinz, Nov 28 2015
a(n) = (A000108(2*n+1) + A000108(n)^2)/2. - Vladimir Reshetnikov, Oct 03 2016

Extensions

Cross-reference corrected by Robert Israel, Jun 06 2014

A116872 Subtriangle of generalized Catalan triangle CM(1,2) = A116880.

Original entry on oeis.org

1, 3, 7, 13, 29, 41, 67, 147, 195, 247, 381, 829, 1069, 1277, 1545, 2307, 4995, 6339, 7379, 8451, 9975, 14589, 31485, 39549, 45373, 50733, 56829, 66057, 95235, 205059, 255747, 290691, 320707, 351187, 388099
Offset: 1

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

This triangle a(n,m) appears for the unnormalized one-point function T(n,n+m-1) in the totally asymmetric exclusion process (see A067323 for the references) for the (unphysical) values alpha=1, beta=2.

Crossrefs

Row sums give A116879.

Formula

a(n,m)=A116880(n,m-1), n>=m>=1.
G.f. for column m>=1: (x^m)*(-(C2(m) + ((2^2)/x^(m-1))*(c(m-1,2*x)-1)/(2*x)) + 2*(C2(m-1) + (2/x^(m-1))*c(m-2,2*x))*c(2*x))/(1+x) where C2(n):=A064062(n), c(m,x):=sum(C(k)*x^k,k=0..m) with C(k):=A000108(k) (Catalan numbers) and c(x) is the g.f. of A000108.

A116869 Sixth column of triangle A028364.

Original entry on oeis.org

132, 297, 869, 2739, 8986, 30275, 104006, 362738, 1280592, 4566642, 16423581, 59497075, 216901454, 795117015, 2929034130, 10837075830, 40253156520, 150045410430, 561097823490, 2104382963214, 7913603390196
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2006

Keywords

Comments

Also sixth diagonal of triangle A067323.

Crossrefs

Cf. A067296 (fifth column).

Formula

a(n)= A028364(n+5,5) = sum(C(k)*C(n+5-k),k=0..5), with the Catalan numbers C(n):=A000108(n).
G.f.: (c5(x)*c(x)-(c5(x)-1)/x)/x^5, with c5(x) := sum(C(k)*x^k, k=0..5) and c(x) is the g.f. for the Catalan numbers A000108.
Showing 1-10 of 11 results. Next