cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067391 a(n) is the least common multiple of numbers in {1,2,3,...,n-1} which do not divide n.

Original entry on oeis.org

1, 1, 2, 3, 12, 20, 60, 210, 840, 504, 2520, 27720, 27720, 51480, 360360, 180180, 720720, 4084080, 12252240, 232792560, 232792560, 21162960, 232792560, 5354228880, 5354228880, 2059318800, 26771144400, 80313433200, 80313433200
Offset: 1

Views

Author

Labos Elemer, Jan 22 2002

Keywords

Examples

			For n=10: non-divisors = {3,4,6,7,8,9}, lcm(3,4,6,7,8,9) = 8*9*7 = 504 = a(10).
For n=18, a(18) = lcm(4,5,7,8,10,11,12,13,14,15,16,17) = 4084080.
		

Crossrefs

Cf. A049820 [count], A007978 [min], A024816 [sum], A055067 [product].
Cf. A173540.

Programs

  • Haskell
    a067391 n | n <= 2    = 1
              | otherwise = foldl lcm 1 $ a173540_row n
    -- Reinhard Zumkeller, Apr 04 2012
  • Mathematica
    a[n_] := LCM@@Select[Range[1, n-1], Mod[n, # ]!=0& ]
    Join[{1,1},Table[LCM@@Complement[Range[n],Divisors[n]],{n,3,30}]] (* Harvey P. Dale, Mar 27 2013 *)

Formula

Let f(n) = lcm(1, 2, ..., n-1) = A003418(n-1). If n = 2*p^k for some prime p, then a(n) = f(n)/p; otherwise a(n) = f(n).