A067391 a(n) is the least common multiple of numbers in {1,2,3,...,n-1} which do not divide n.
1, 1, 2, 3, 12, 20, 60, 210, 840, 504, 2520, 27720, 27720, 51480, 360360, 180180, 720720, 4084080, 12252240, 232792560, 232792560, 21162960, 232792560, 5354228880, 5354228880, 2059318800, 26771144400, 80313433200, 80313433200
Offset: 1
Keywords
Examples
For n=10: non-divisors = {3,4,6,7,8,9}, lcm(3,4,6,7,8,9) = 8*9*7 = 504 = a(10). For n=18, a(18) = lcm(4,5,7,8,10,11,12,13,14,15,16,17) = 4084080.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Haskell
a067391 n | n <= 2 = 1 | otherwise = foldl lcm 1 $ a173540_row n -- Reinhard Zumkeller, Apr 04 2012
-
Mathematica
a[n_] := LCM@@Select[Range[1, n-1], Mod[n, # ]!=0& ] Join[{1,1},Table[LCM@@Complement[Range[n],Divisors[n]],{n,3,30}]] (* Harvey P. Dale, Mar 27 2013 *)
Formula
Let f(n) = lcm(1, 2, ..., n-1) = A003418(n-1). If n = 2*p^k for some prime p, then a(n) = f(n)/p; otherwise a(n) = f(n).