cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A067402 Triangle with columns built from certain power sequences.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 5, 1, 1, 48, 45, 7, 1, 1, 192, 405, 112, 9, 1, 1, 768, 3645, 1792, 225, 11, 1, 1, 3072, 32805, 28672, 5625, 396, 13, 1, 1, 12288, 295245, 458752, 140625, 14256, 637, 15, 1, 1, 49152, 2657205, 7340032, 3515625, 513216, 31213, 960, 17, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Examples

			Triangle starts:
      m=0   1   2   3   4
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  3,  1;
  n=3:  1, 12,  5,  1;
  n=4:  1, 48, 45,  7,  1;
  ...
		

Crossrefs

Cf. A009998 (triangle built from powers of (m+1)).
Columns m=0..8: A000012, A002001, A067403-A067409.

Programs

  • Mathematica
    A[n_,m_]:=If[n==m,1,(2m+1)(m+1)^(2(n-m-1))]; Flatten[Table[A[n,m],{n,0,9},{m,0,n}]] (* Stefano Spezia, Sep 30 2022 *)

Formula

a(n, m) = 1 if n=m; a(n, m) = (2*m+1)*(m+1)^(2*(n-m-1)) if n>m>=0.
G.f. for column m: (x^m)*(1-x*m^2)/(1-x*(m+1)^2).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002

A067408 Eighth column of triangle A067402.

Original entry on oeis.org

1, 15, 960, 61440, 3932160, 251658240, 16106127360, 1030792151040, 65970697666560, 4222124650659840, 270215977642229760, 17293822569102704640, 1106804644422573096960, 70835497243044678205440, 4533471823554859405148160, 290142196707511001929482240, 18569100589280704123486863360
Offset: 0

Views

Author

Wolfdieter Lang, Jan 25 2002

Keywords

Crossrefs

Cf. A067407 (seventh column), A067409 (ninth column).
Cf. A067402.

Programs

  • Mathematica
    LinearRecurrence[{64},{1,15},20] (* or *) Join[{1},NestList[64#&,15,20]] (* Harvey P. Dale, Aug 25 2016 *)

Formula

a(n) = A067402(n+7, 7).
G.f.: (1-49*x)/(1-64*x).
E.g.f.: (49 + 15*exp(64*x))/64. - Stefano Spezia, Sep 30 2022

Extensions

Incorrect formula deleted by Harvey P. Dale, Aug 25 2016
Showing 1-2 of 2 results.