A067490 Powers of 4 with initial digit 1.
1, 16, 1024, 16384, 1048576, 16777216, 1073741824, 17179869184, 1099511627776, 17592186044416, 1125899906842624, 18014398509481984, 1152921504606846976, 18446744073709551616, 1180591620717411303424, 18889465931478580854784, 1208925819614629174706176
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..400
- Index to divisibility sequences
Crossrefs
Programs
-
GAP
Filtered(List([0..40],n->4^n),i->ListOfDigits(i)[1]=1); # Muniru A Asiru, Oct 22 2018
-
Maple
select(x-> "1"=""||x[1],[4^n$n=0..60])[]; # Alois P. Heinz, Oct 22 2018
Formula
a(n+1)/a(n) is in {16, 64, 1024}, so 16^n <= a(n+1) < 1024^n. Asymptotically, the exponent should be 100; I can prove that 99^n << a(n) << 101^n. [Charles R Greathouse IV, Jan 19 2012]
Extensions
a(16) inserted by Muniru A Asiru, Oct 22 2018